Relative Gorenstein flat modules and Foxby classes and their model structures

Pub Date : 2024-02-22 DOI:10.1142/s0219498825501944
Driss Bennis, Rachid El Maaouy, J. R. García Rozas, Luis Oyonarte
{"title":"Relative Gorenstein flat modules and Foxby classes and their model structures","authors":"Driss Bennis, Rachid El Maaouy, J. R. García Rozas, Luis Oyonarte","doi":"10.1142/s0219498825501944","DOIUrl":null,"url":null,"abstract":"<p>We introduce the concepts of relative (strongly) cotorsion and relative Gorenstein cotorsion modules for a non-necessarily semidualizing module and prove that there exists a unique hereditary abelian model structure where the cofibrations are the monomorphisms with relative Gorenstein flat cokernel and the fibrations are the epimorphisms with relative cotorsion kernel belonging to the Bass class. In the particular case of a semidualizing module, we investigate the existence of abelian model structures on the category of left (right) R-modules where the cofibrations are the epimorphisms (monomorphisms) with kernel (cokernel) belonging to the Bass (Auslander) class. We also show that the class of relative Gorenstein flat modules and the Bass class are part of weak AB-contexts.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concepts of relative (strongly) cotorsion and relative Gorenstein cotorsion modules for a non-necessarily semidualizing module and prove that there exists a unique hereditary abelian model structure where the cofibrations are the monomorphisms with relative Gorenstein flat cokernel and the fibrations are the epimorphisms with relative cotorsion kernel belonging to the Bass class. In the particular case of a semidualizing module, we investigate the existence of abelian model structures on the category of left (right) R-modules where the cofibrations are the epimorphisms (monomorphisms) with kernel (cokernel) belonging to the Bass (Auslander) class. We also show that the class of relative Gorenstein flat modules and the Bass class are part of weak AB-contexts.

分享
查看原文
相对戈伦斯坦平面模块和福克斯比类及其模型结构
我们为一个非必然半化模块引入了相对(强)扭转模块和相对戈伦斯坦扭转模块的概念,并证明存在一个唯一的遗传无性模型结构,其中共纤是具有相对戈伦斯坦平面内核的单形变,纤是具有相对扭转内核的属于巴斯类的外形变。在半双化模子的特殊情况下,我们研究了左(右)R 模子范畴中的无边模型结构的存在性,其中共纤是具有属于 Bass(Auslander)类的核(cokernel)的外变形(单变形)。我们还证明了相对戈伦斯坦平面模块类和巴斯类是弱 AB 上下文的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信