{"title":"Generic alignment conjecture for systems of Cucker–Smale type","authors":"Roman Shvydkoy","doi":"10.1007/s00028-024-00950-1","DOIUrl":null,"url":null,"abstract":"<p>The generic alignment conjecture states that for almost every initial data on the torus solutions to the Cucker–Smale system with a strictly local communication align to the common mean velocity. In this note, we present a partial resolution of this conjecture using a statistical mechanics approach. First, the conjecture holds in full for the sticky particle model representing, formally, infinitely strong local communication. In the classical case, the conjecture is proved when <i>N</i>, the number of agents, is equal to 2. It follows from a more general result, stating that for a system of any size for almost every data at least two agents align. The analysis is extended to the open space <span>\\(\\mathbb {R}^n\\)</span> in the presence of confinement and potential interaction forces. In particular, it is shown that almost every non-oscillatory pair of solutions aligns and aggregates in the potential well.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00950-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The generic alignment conjecture states that for almost every initial data on the torus solutions to the Cucker–Smale system with a strictly local communication align to the common mean velocity. In this note, we present a partial resolution of this conjecture using a statistical mechanics approach. First, the conjecture holds in full for the sticky particle model representing, formally, infinitely strong local communication. In the classical case, the conjecture is proved when N, the number of agents, is equal to 2. It follows from a more general result, stating that for a system of any size for almost every data at least two agents align. The analysis is extended to the open space \(\mathbb {R}^n\) in the presence of confinement and potential interaction forces. In particular, it is shown that almost every non-oscillatory pair of solutions aligns and aggregates in the potential well.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators