A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects

IF 1.1 3区 数学 Q1 MATHEMATICS
Christian Stinner, Michael Winkler
{"title":"A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects","authors":"Christian Stinner, Michael Winkler","doi":"10.1007/s00028-024-00954-x","DOIUrl":null,"url":null,"abstract":"<p>The quasilinear Keller–Segel system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} u_t=\\nabla \\cdot (D(u)\\nabla u) - \\nabla \\cdot (S(u)\\nabla v), \\\\ v_t=\\Delta v-v+u, \\end{array}\\right. \\end{aligned}$$</span><p>endowed with homogeneous Neumann boundary conditions is considered in a bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span>, <span>\\(n \\ge 3\\)</span>, with smooth boundary for sufficiently regular functions <i>D</i> and <i>S</i> satisfying <span>\\(D&gt;0\\)</span> on <span>\\([0,\\infty )\\)</span>, <span>\\(S&gt;0\\)</span> on <span>\\((0,\\infty )\\)</span> and <span>\\(S(0)=0\\)</span>. On the one hand, it is shown that if <span>\\(\\frac{S}{D}\\)</span> satisfies the subcritical growth condition </p><span>$$\\begin{aligned} \\frac{S(s)}{D(s)} \\le C s^\\alpha \\qquad \\text{ for } \\text{ all } s\\ge 1 \\qquad \\text{ with } \\text{ some } \\alpha &lt; \\frac{2}{n} \\end{aligned}$$</span><p>and <span>\\(C&gt;0\\)</span>, then for any sufficiently regular initial data there exists a global weak energy solution such that <span>\\({ \\mathrm{{ess}}} \\sup _{t&gt;0} \\Vert u(t) \\Vert _{L^p(\\Omega )}&lt;\\infty \\)</span> for some <span>\\(p &gt; \\frac{2n}{n+2}\\)</span>. On the other hand, if <span>\\(\\frac{S}{D}\\)</span> satisfies the supercritical growth condition </p><span>$$\\begin{aligned} \\frac{S(s)}{D(s)} \\ge c s^\\alpha \\qquad \\text{ for } \\text{ all } s\\ge 1 \\qquad \\text{ with } \\text{ some } \\alpha &gt; \\frac{2}{n} \\end{aligned}$$</span><p>and <span>\\(c&gt;0\\)</span>, then the nonexistence of a global weak energy solution having the boundedness property stated above is shown for some initial data in the radial setting. This establishes some criticality of the value <span>\\(\\alpha = \\frac{2}{n}\\)</span> for <span>\\(n \\ge 3\\)</span>, without any additional assumption on the behavior of <i>D</i>(<i>s</i>) as <span>\\(s \\rightarrow \\infty \\)</span>, in particular without requiring any algebraic lower bound for <i>D</i>. When applied to the Keller–Segel system with volume-filling effect for probability distribution functions of the type <span>\\(Q(s) = \\exp (-s^\\beta )\\)</span>, <span>\\(s \\ge 0\\)</span>, for global solvability the exponent <span>\\(\\beta = \\frac{n-2}{n}\\)</span> is seen to be critical.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"102 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00954-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The quasilinear Keller–Segel system

$$\begin{aligned} \left\{ \begin{array}{l} u_t=\nabla \cdot (D(u)\nabla u) - \nabla \cdot (S(u)\nabla v), \\ v_t=\Delta v-v+u, \end{array}\right. \end{aligned}$$

endowed with homogeneous Neumann boundary conditions is considered in a bounded domain \(\Omega \subset {\mathbb {R}}^n\), \(n \ge 3\), with smooth boundary for sufficiently regular functions D and S satisfying \(D>0\) on \([0,\infty )\), \(S>0\) on \((0,\infty )\) and \(S(0)=0\). On the one hand, it is shown that if \(\frac{S}{D}\) satisfies the subcritical growth condition

$$\begin{aligned} \frac{S(s)}{D(s)} \le C s^\alpha \qquad \text{ for } \text{ all } s\ge 1 \qquad \text{ with } \text{ some } \alpha < \frac{2}{n} \end{aligned}$$

and \(C>0\), then for any sufficiently regular initial data there exists a global weak energy solution such that \({ \mathrm{{ess}}} \sup _{t>0} \Vert u(t) \Vert _{L^p(\Omega )}<\infty \) for some \(p > \frac{2n}{n+2}\). On the other hand, if \(\frac{S}{D}\) satisfies the supercritical growth condition

$$\begin{aligned} \frac{S(s)}{D(s)} \ge c s^\alpha \qquad \text{ for } \text{ all } s\ge 1 \qquad \text{ with } \text{ some } \alpha > \frac{2}{n} \end{aligned}$$

and \(c>0\), then the nonexistence of a global weak energy solution having the boundedness property stated above is shown for some initial data in the radial setting. This establishes some criticality of the value \(\alpha = \frac{2}{n}\) for \(n \ge 3\), without any additional assumption on the behavior of D(s) as \(s \rightarrow \infty \), in particular without requiring any algebraic lower bound for D. When applied to the Keller–Segel system with volume-filling effect for probability distribution functions of the type \(Q(s) = \exp (-s^\beta )\), \(s \ge 0\), for global solvability the exponent \(\beta = \frac{n-2}{n}\) is seen to be critical.

具有任意快速衰减扩散量的准线性凯勒-西格尔系统中的临界指数,考虑到体积填充效应
准线性凯勒-西格尔系统 $$\begin{aligned}\u_t=\nabla \cdot (D(u)\nabla u) -\nabla \cdot (S(u)\nabla v), \v_t=\Delta v-v+u, \end{array}\right.\end{aligned}$$endowed with homogeneous Neumann boundary conditions is considered in a bounded domain \(\Omega \subset {\mathbb {R}}^n\), \(n \ge 3\), with smooth boundary for sufficiently regular functions D and S satisfying (D>;0) on \([0,\infty )\),\(S>0\) on \((0,\infty )\) and\(S(0)=0\).一方面,可以证明如果(\frac{S}{D}\)满足次临界增长条件$$\begin{aligned}.\frac{S(s)}{D(s)} \le C s^\alpha \qquad \text{ for }\sge 1 *qquad *text{ with }\(text{ some }#alpha < #frac{2}{n}\end{aligned}$$和 (C>0\),那么对于任何足够规则的初始数据,存在一个全局弱能量解,使得 ({ \mathrm{{ess}}\sup _{t>0}\Vert u(t) \Vert _{L^p(\Omega )}<\infty \) for some \(p > \frac{2n}{n+2}\).另一方面,如果 \(\frac{S}{D}\)满足超临界增长条件 $$\begin{aligned}\frac{S(s)}{D(s)} \ge c s^\alpha \qquad \text{ for }\1 *qquad *text{ with }\(text{ some }\alpha > \frac{2}{n}\end{aligned}$$和 \(c>0\),那么对于径向设置中的一些初始数据来说,具有上述有界性的全局弱能解不存在。这为 \(n \ge 3\) 的值\(α= \frac{2}{n}\) 确定了一些临界性,而不需要对 D(s) 作为 \(s \rightarrow \infty \) 的行为做任何额外的假设,特别是不需要 D 的任何代数下限。当应用于具有体积填充效应的凯勒-西格尔系统时,对于类型为 \(Q(s) = \exp (-s^\beta )\), \(s \ge 0\) 的概率分布函数来说,对于全局可解性来说,指数 \(\beta = \frac{n-2}{n}\) 是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信