{"title":"Learning an Image-Based Visual Servoing Controller for Object Grasping","authors":"Shuaijun Wang, Lining Sun, Mantian Li, Pengfei Wang, Fusheng Zha, Wei Guo, Qiang Li","doi":"10.1142/s0219843623500330","DOIUrl":null,"url":null,"abstract":"<p>Adaptive and cooperative control of arms and fingers for natural object reaching and grasping, without explicit 3D geometric pose information, is observed in humans. In this study, an image-based visual servoing controller, inspired by human grasping behavior, is proposed for an arm-gripper system. A large-scale dataset is constructed using Pybullet simulation, comprising paired images and arm-gripper control signals mimicking expert grasping behavior. Leveraging this dataset, a network is directly trained to derive a control policy that maps images to cooperative grasp control. Subsequently, the learned synergy grasping policy from the network is directly applied to a real robot with the same configuration. Experimental results demonstrate the effectiveness of the algorithm. Videos can be found at https://www.bilibili.com/video/BV1tg4y1b7Qe/.</p>","PeriodicalId":50319,"journal":{"name":"International Journal of Humanoid Robotics","volume":"51 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Humanoid Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0219843623500330","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive and cooperative control of arms and fingers for natural object reaching and grasping, without explicit 3D geometric pose information, is observed in humans. In this study, an image-based visual servoing controller, inspired by human grasping behavior, is proposed for an arm-gripper system. A large-scale dataset is constructed using Pybullet simulation, comprising paired images and arm-gripper control signals mimicking expert grasping behavior. Leveraging this dataset, a network is directly trained to derive a control policy that maps images to cooperative grasp control. Subsequently, the learned synergy grasping policy from the network is directly applied to a real robot with the same configuration. Experimental results demonstrate the effectiveness of the algorithm. Videos can be found at https://www.bilibili.com/video/BV1tg4y1b7Qe/.
期刊介绍:
The International Journal of Humanoid Robotics (IJHR) covers all subjects on the mind and body of humanoid robots. It is dedicated to advancing new theories, new techniques, and new implementations contributing to the successful achievement of future robots which not only imitate human beings, but also serve human beings. While IJHR encourages the contribution of original papers which are solidly grounded on proven theories or experimental procedures, the journal also encourages the contribution of innovative papers which venture into the new, frontier areas in robotics. Such papers need not necessarily demonstrate, in the early stages of research and development, the full potential of new findings on a physical or virtual robot.
IJHR welcomes original papers in the following categories:
Research papers, which disseminate scientific findings contributing to solving technical issues underlying the development of humanoid robots, or biologically-inspired robots, having multiple functionality related to either physical capabilities (i.e. motion) or mental capabilities (i.e. intelligence)
Review articles, which describe, in non-technical terms, the latest in basic theories, principles, and algorithmic solutions
Short articles (e.g. feature articles and dialogues), which discuss the latest significant achievements and the future trends in robotics R&D
Papers on curriculum development in humanoid robot education
Book reviews.