{"title":"The effect of imperfect bonding on stress distribution in fibrous composites","authors":"Parvaneh Kheirkhah Barzoki, Tianyi Hua, Ouli Fu, Yasser Gowayed","doi":"10.1177/00219983241241497","DOIUrl":null,"url":null,"abstract":"An attempt was made to map the distribution of stress in fibrous composites with imperfect bonding. Two analytical micro-mechanics models were developed. In the first model, the composite was subjected to axial tensile loading, parallel to the fiber direction, and the assumption of iso-strain was employed to derive the control equations. In the second model, the composite was loaded in the direction transverse to the fiber. An iso-stress condition was employed, and Airy stress function was utilized to articulate the stress and displacement equations. An assumption of how the stress is transferred between the matrix and the fiber was introduced in both models. To investigate and validate the models, specimens were fabricated using a carbon plain weave fabric and a geopolymer matrix. Single fiber pullout and three-point bending tests were carried out. The maximum average tensile stress obtained from the three-point bending tests, as well as the mechanical properties of the fiber and geopolymer, served as input for the models. Results indicate that the effect of the level of bonding is very high in the transverse direction while almost negligible in the axial direction. The difference in the maximum value of the axial tensile stress at the fiber-matrix interface was used to calculate the numerical value of the interfacial shear strength, and the numerical result matched the data obtained from the single fiber pullout test.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241241497","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
An attempt was made to map the distribution of stress in fibrous composites with imperfect bonding. Two analytical micro-mechanics models were developed. In the first model, the composite was subjected to axial tensile loading, parallel to the fiber direction, and the assumption of iso-strain was employed to derive the control equations. In the second model, the composite was loaded in the direction transverse to the fiber. An iso-stress condition was employed, and Airy stress function was utilized to articulate the stress and displacement equations. An assumption of how the stress is transferred between the matrix and the fiber was introduced in both models. To investigate and validate the models, specimens were fabricated using a carbon plain weave fabric and a geopolymer matrix. Single fiber pullout and three-point bending tests were carried out. The maximum average tensile stress obtained from the three-point bending tests, as well as the mechanical properties of the fiber and geopolymer, served as input for the models. Results indicate that the effect of the level of bonding is very high in the transverse direction while almost negligible in the axial direction. The difference in the maximum value of the axial tensile stress at the fiber-matrix interface was used to calculate the numerical value of the interfacial shear strength, and the numerical result matched the data obtained from the single fiber pullout test.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).