{"title":"Optimization Techniques for Cogging Torque Reduction and Thermal Characterization in Brushless DC Motor","authors":"C. Kamal, T. Thyagarajan, D. Kalpana","doi":"10.1007/s40998-024-00699-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents soft computing-based optimization techniques for the cogging torque reduction and thermal characterization by finite element analysis in a permanent magnet brushless DC motor (BLDC). Stator and rotor structure of BLDC motor are optimized to reduce the cogging torque, noise, and vibration by using the design parameters namely: length of magnet, length of air gap and opening in the stator slot which are selected by performing variance-based sensitivity analysis. The proposed method is suitable in the preliminary design phase of the motor to determine the optimal structure to improve the efficiency. The comparison of results obtained using firefly algorithm , ant colony optimization algorithm and Bat algorithm indicate that Firefly-based optimization algorithm is capable of giving improved design parameter output. Cogging torque is created due to the interaction of magnets in the rotor and the stator slot of the motor. Thorough thermal analysis is also conceded out to investigate the thermal characteristics at dissimilar portions of the motor namely: stator core, stator slot, rotor core and permanent magnet at different operating environments in the continuous operation mode. Thermal investigation is required for the various high speed e-vehicle applications. The usefulness of the designed machine simulation is compared with the results obtained from hardware analysis. The outcomes attained from software simulation studies are validated through experimental hardware setup.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00699-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents soft computing-based optimization techniques for the cogging torque reduction and thermal characterization by finite element analysis in a permanent magnet brushless DC motor (BLDC). Stator and rotor structure of BLDC motor are optimized to reduce the cogging torque, noise, and vibration by using the design parameters namely: length of magnet, length of air gap and opening in the stator slot which are selected by performing variance-based sensitivity analysis. The proposed method is suitable in the preliminary design phase of the motor to determine the optimal structure to improve the efficiency. The comparison of results obtained using firefly algorithm , ant colony optimization algorithm and Bat algorithm indicate that Firefly-based optimization algorithm is capable of giving improved design parameter output. Cogging torque is created due to the interaction of magnets in the rotor and the stator slot of the motor. Thorough thermal analysis is also conceded out to investigate the thermal characteristics at dissimilar portions of the motor namely: stator core, stator slot, rotor core and permanent magnet at different operating environments in the continuous operation mode. Thermal investigation is required for the various high speed e-vehicle applications. The usefulness of the designed machine simulation is compared with the results obtained from hardware analysis. The outcomes attained from software simulation studies are validated through experimental hardware setup.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.