Optimization Techniques for Cogging Torque Reduction and Thermal Characterization in Brushless DC Motor

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Kamal, T. Thyagarajan, D. Kalpana
{"title":"Optimization Techniques for Cogging Torque Reduction and Thermal Characterization in Brushless DC Motor","authors":"C. Kamal, T. Thyagarajan, D. Kalpana","doi":"10.1007/s40998-024-00699-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents soft computing-based optimization techniques for the cogging torque reduction and thermal characterization by finite element analysis in a permanent magnet brushless DC motor (BLDC). Stator and rotor structure of BLDC motor are optimized to reduce the cogging torque, noise, and vibration by using the design parameters namely: length of magnet, length of air gap and opening in the stator slot which are selected by performing variance-based sensitivity analysis. The proposed method is suitable in the preliminary design phase of the motor to determine the optimal structure to improve the efficiency. The comparison of results obtained using firefly algorithm , ant colony optimization algorithm and Bat algorithm indicate that Firefly-based optimization algorithm is capable of giving improved design parameter output. Cogging torque is created due to the interaction of magnets in the rotor and the stator slot of the motor. Thorough thermal analysis is also conceded out to investigate the thermal characteristics at dissimilar portions of the motor namely: stator core, stator slot, rotor core and permanent magnet at different operating environments in the continuous operation mode. Thermal investigation is required for the various high speed e-vehicle applications. The usefulness of the designed machine simulation is compared with the results obtained from hardware analysis. The outcomes attained from software simulation studies are validated through experimental hardware setup.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00699-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents soft computing-based optimization techniques for the cogging torque reduction and thermal characterization by finite element analysis in a permanent magnet brushless DC motor (BLDC). Stator and rotor structure of BLDC motor are optimized to reduce the cogging torque, noise, and vibration by using the design parameters namely: length of magnet, length of air gap and opening in the stator slot which are selected by performing variance-based sensitivity analysis. The proposed method is suitable in the preliminary design phase of the motor to determine the optimal structure to improve the efficiency. The comparison of results obtained using firefly algorithm , ant colony optimization algorithm and Bat algorithm indicate that Firefly-based optimization algorithm is capable of giving improved design parameter output. Cogging torque is created due to the interaction of magnets in the rotor and the stator slot of the motor. Thorough thermal analysis is also conceded out to investigate the thermal characteristics at dissimilar portions of the motor namely: stator core, stator slot, rotor core and permanent magnet at different operating environments in the continuous operation mode. Thermal investigation is required for the various high speed e-vehicle applications. The usefulness of the designed machine simulation is compared with the results obtained from hardware analysis. The outcomes attained from software simulation studies are validated through experimental hardware setup.

Abstract Image

降低无刷直流电机齿槽转矩和热特性的优化技术
本文介绍了通过有限元分析降低永磁无刷直流电机(BLDC)齿槽转矩和热特性的基于软计算的优化技术。无刷直流电机的定子和转子结构通过设计参数(即磁体长度、气隙长度和定子槽开口)进行优化,以降低齿槽转矩、噪音和振动。所提出的方法适用于电机的初步设计阶段,以确定提高效率的最佳结构。使用萤火虫算法、蚁群优化算法和蝙蝠算法得出的结果比较表明,基于萤火虫的优化算法能够提供更好的设计参数输出。由于电机转子和定子槽中的磁铁相互作用,会产生齿槽转矩。此外,还进行了全面的热分析,以研究电机不同部分(定子铁芯、定子槽、转子铁芯和永磁体)在连续运行模式下不同工作环境中的热特性。各种高速电动汽车应用都需要进行热调查。设计的机器仿真与硬件分析结果进行了比较。软件模拟研究得出的结果通过实验硬件设置进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
4.20%
发文量
93
审稿时长
>12 weeks
期刊介绍: Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well as applications of established techniques to new domains in various electical engineering disciplines such as: Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers, organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信