Poisson commutative subalgebras associated with a Cartan subalgebra

Pub Date : 2024-03-13 DOI:10.1007/s00229-024-01545-3
Oksana S. Yakimova
{"title":"Poisson commutative subalgebras associated with a Cartan subalgebra","authors":"Oksana S. Yakimova","doi":"10.1007/s00229-024-01545-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathfrak g}\\)</span> be a reductive Lie algebra and <span>\\(\\mathfrak t\\subset \\mathfrak g\\)</span> a Cartan subalgebra. The <span>\\(\\mathfrak t\\)</span>-stable decomposition <span>\\({\\mathfrak g}=\\mathfrak t\\oplus {\\mathfrak m}\\)</span> yields a bi-grading of the symmetric algebra <span>\\({\\mathcal {S}}({\\mathfrak g})\\)</span>. The subalgebra <span>\\({\\mathcal {Z}}_{({\\mathfrak g},\\mathfrak t)}\\)</span> generated by the bi-homogenous components of the symmetric invariants <span>\\(F\\in {\\mathcal {S}}({\\mathfrak g})^{\\mathfrak g}\\)</span> is known to be Poisson commutative. Furthermore the algebra <span>\\({\\tilde{{\\mathcal {Z}}}}=\\textsf{alg}\\langle {\\mathcal {Z}}_{({\\mathfrak g},{\\mathfrak t})},{\\mathfrak t}\\rangle \\)</span> is also Poisson commutative. We investigate relations between <span>\\({\\tilde{{\\mathcal {Z}}}}\\)</span> and Mishchenko–Fomenko subalgebras. In type <span>A</span>, we construct a quantisation of <span>\\({\\tilde{{\\mathcal {Z}}}}\\)</span> making use of quantum Mishchenko–Fomenko algebras.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01545-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathfrak g}\) be a reductive Lie algebra and \(\mathfrak t\subset \mathfrak g\) a Cartan subalgebra. The \(\mathfrak t\)-stable decomposition \({\mathfrak g}=\mathfrak t\oplus {\mathfrak m}\) yields a bi-grading of the symmetric algebra \({\mathcal {S}}({\mathfrak g})\). The subalgebra \({\mathcal {Z}}_{({\mathfrak g},\mathfrak t)}\) generated by the bi-homogenous components of the symmetric invariants \(F\in {\mathcal {S}}({\mathfrak g})^{\mathfrak g}\) is known to be Poisson commutative. Furthermore the algebra \({\tilde{{\mathcal {Z}}}}=\textsf{alg}\langle {\mathcal {Z}}_{({\mathfrak g},{\mathfrak t})},{\mathfrak t}\rangle \) is also Poisson commutative. We investigate relations between \({\tilde{{\mathcal {Z}}}}\) and Mishchenko–Fomenko subalgebras. In type A, we construct a quantisation of \({\tilde{{\mathcal {Z}}}}\) making use of quantum Mishchenko–Fomenko algebras.

分享
查看原文
与 Cartan 子代数相关的泊松交换子代数
让({\mathfrak g})是一个还原的李代数,而(\mathfrak t\subset \mathfrak g\ )是一个笛卡尔子代数。\(\mathfrak t\)-stable decomposition \({\mathfrak g}=\mathfrak toplus {\mathfrak m}\) 产生了对称代数 \({\mathcal {S}}({\mathfrak g})\)的双级。已知由对称不变式的双同源分量产生的子代数 \(F\in {\mathcal {S}}({\mathfrak g})^{\mathfrak g}\) 是泊松交换的。此外,代数({\tilde{\mathcal {Z}}}}=\textsf{alg}\langle {\mathcal {Z}}_{({\mathfrak g},{\mathfrak t})},{\mathfrak t}\rangle \)也是泊松交换的。我们研究了 \({\tilde{\mathcal {Z}}}}\) 和 Mishchenko-Fomenko 子代数之间的关系。在 A 型中,我们利用量子米申科-弗门科代数构造了一个 \({\tilde{{\mathcal {Z}}}}\) 的量子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信