{"title":"Randomized Douglas–Rachford Methods for Linear Systems: Improved Accuracy and Efficiency","authors":"Deren Han, Yansheng Su, Jiaxin Xie","doi":"10.1137/23m1567503","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 1045-1070, March 2024. <br/> Abstract. The Douglas–Rachford (DR) method is a widely used method for finding a point in the intersection of two closed convex sets (feasibility problem). However, the method converges weakly, and the associated rate of convergence is hard to analyze in general. In addition, the direct extension of the DR method for solving more-than-two-sets feasibility problems, called the [math]-sets-DR method, is not necessarily convergent. To improve the efficiency of the optimization algorithms, the introduction of randomization and the momentum technique has attracted increasing attention. In this paper, we propose the randomized [math]-sets-DR (RrDR) method for solving the feasibility problem derived from linear systems, showing the benefit of the randomization as it brings linear convergence in expectation to the otherwise divergent [math]-sets-DR method. Furthermore, the convergence rate does not depend on the dimension of the coefficient matrix. We also study RrDR with heavy ball momentum and establish its accelerated rate. Numerical experiments are provided to confirm our results and demonstrate the notable improvements in accuracy and efficiency of the DR method brought by the randomization and the momentum technique.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1567503","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 1, Page 1045-1070, March 2024. Abstract. The Douglas–Rachford (DR) method is a widely used method for finding a point in the intersection of two closed convex sets (feasibility problem). However, the method converges weakly, and the associated rate of convergence is hard to analyze in general. In addition, the direct extension of the DR method for solving more-than-two-sets feasibility problems, called the [math]-sets-DR method, is not necessarily convergent. To improve the efficiency of the optimization algorithms, the introduction of randomization and the momentum technique has attracted increasing attention. In this paper, we propose the randomized [math]-sets-DR (RrDR) method for solving the feasibility problem derived from linear systems, showing the benefit of the randomization as it brings linear convergence in expectation to the otherwise divergent [math]-sets-DR method. Furthermore, the convergence rate does not depend on the dimension of the coefficient matrix. We also study RrDR with heavy ball momentum and establish its accelerated rate. Numerical experiments are provided to confirm our results and demonstrate the notable improvements in accuracy and efficiency of the DR method brought by the randomization and the momentum technique.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.