{"title":"Analysis of factors driving water main breaks across 13 Canadian utilities","authors":"Sadaf Gharaati, Rebecca Dziedzic","doi":"10.1186/s40068-024-00334-x","DOIUrl":null,"url":null,"abstract":"Deterioration of water infrastructure is a global challenge that jeopardizes water system ability to deliver water safely. While various factors affect watermain failure, previous studies have focused on common pipe attributes or general protection strategies. The main objective of this study is to examine the relationship between pipe break characteristics and system properties. Comprehensive data from thirteen Canadian water systems (over 60,000 failures) are examined with correlation and chi-squared analyses. Joint and fitting failures are most likely for pipes aged 20 years or less, and universal joints are most associated with joint failure. Pipes in clay and sand soils are more likely to break due to improper bedding and differential settlement, respectively. Furthermore, in the summer, accidental breaks of asbestos cement pipes are more likely, as are failures of pipes with collar joints and coal tar lined pipes. By exploring these relationships, the paper provides insights into opportunities for reducing water main failure, through improved design, maintenance and rehabilitation.","PeriodicalId":12037,"journal":{"name":"Environmental Systems Research","volume":"148 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40068-024-00334-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deterioration of water infrastructure is a global challenge that jeopardizes water system ability to deliver water safely. While various factors affect watermain failure, previous studies have focused on common pipe attributes or general protection strategies. The main objective of this study is to examine the relationship between pipe break characteristics and system properties. Comprehensive data from thirteen Canadian water systems (over 60,000 failures) are examined with correlation and chi-squared analyses. Joint and fitting failures are most likely for pipes aged 20 years or less, and universal joints are most associated with joint failure. Pipes in clay and sand soils are more likely to break due to improper bedding and differential settlement, respectively. Furthermore, in the summer, accidental breaks of asbestos cement pipes are more likely, as are failures of pipes with collar joints and coal tar lined pipes. By exploring these relationships, the paper provides insights into opportunities for reducing water main failure, through improved design, maintenance and rehabilitation.