Gradient higher integrability for singular parabolic double-phase systems

{"title":"Gradient higher integrability for singular parabolic double-phase systems","authors":"","doi":"10.1007/s00030-024-00928-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of <em>p</em>-Laplace type when <span> <span>\\(\\tfrac{2n}{n+2}&lt; p\\le 2\\)</span> </span>. The result is based on a reverse Hölder inequality in intrinsic cylinders combining <em>p</em>-intrinsic and (<em>p</em>, <em>q</em>)-intrinsic geometries. A singular scaling deficits affects the range of <em>q</em>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00928-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when \(\tfrac{2n}{n+2}< p\le 2\) . The result is based on a reverse Hölder inequality in intrinsic cylinders combining p-intrinsic and (pq)-intrinsic geometries. A singular scaling deficits affects the range of q.

奇异抛物线双相系统的梯度高积分性
摘要 我们证明了当 \(\tfrac{2n}{n+2}< p\le 2\) 时 p-Laplace 型抛物线双相系统弱解的梯度的局部高可积分性结果。该结果基于本征圆柱体中的反向霍尔德不等式,结合了 p- 本征和 (p, q) - 本征几何。奇异的缩放缺陷影响了 q 的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信