Positive solution for an elliptic system with critical exponent and logarithmic terms: the higher-dimensional cases

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"Positive solution for an elliptic system with critical exponent and logarithmic terms: the higher-dimensional cases","authors":"","doi":"10.1007/s11784-024-01099-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we consider the coupled elliptic system with critical exponent and logarithmic terms: <span> <span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u=\\lambda _{1}u+ \\mu _1|u|^{2p-2}u+\\beta |u|^{p-2}|v|^{p}u+\\theta _1 u\\log u^2, &amp;{} \\quad x\\in \\Omega ,\\\\ -\\Delta v=\\lambda _{2}v+ \\mu _2|v|^{2p-2}v+\\beta |u|^{p}|v|^{p-2}v+\\theta _2 v\\log v^2, &amp;{}\\quad x\\in \\Omega ,\\\\ u=v=0, &amp;{}\\quad x \\in \\partial \\Omega , \\end{array}\\right. } \\end{aligned}$$</span> </span>where <span> <span>\\(\\Omega \\subset {\\mathbb R}^N\\)</span> </span> is a bounded smooth domain, <span> <span>\\(2p=2^*=\\frac{2N}{N-2}\\)</span> </span> is the Sobolev critical exponent. When <span> <span>\\(N \\ge 5\\)</span> </span>, for different ranges of <span> <span>\\(\\beta ,\\lambda _{i},\\mu _i,\\theta _{i}\\)</span> </span>, <span> <span>\\(i=1,2\\)</span> </span>, we obtain existence and nonexistence results of positive solutions via variational methods. The special case <span> <span>\\(N=4 \\)</span> </span> was studied by Hajaiej et al. (Positive solution for an elliptic system with critical exponent and logarithmic terms, arXiv:2304.13822, 2023). Note that for <span> <span>\\(N\\ge 5\\)</span> </span>, the critical exponent is given by <span> <span>\\(2p\\in \\left( 2,4\\right) \\)</span> </span>; whereas for <span> <span>\\(N=4\\)</span> </span>, it is <span> <span>\\(2p=4\\)</span> </span>. In the higher-dimensional cases <span> <span>\\(N\\ge 5\\)</span> </span> brings new difficulties, and requires new ideas. Besides, we also study the Brézis–Nirenberg problem with logarithmic perturbation <span> <span>$$\\begin{aligned} -\\Delta u=\\lambda u+\\mu |u|^{2p-2}u+\\theta u \\log u^2 \\quad \\text { in }\\Omega , \\end{aligned}$$</span> </span>where <span> <span>\\(\\mu &gt;0, \\theta &lt;0\\)</span> </span>, <span> <span>\\(\\lambda \\in {\\mathbb R}\\)</span> </span>, and obtain the existence of positive local minimum and least energy solution under some certain assumptions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01099-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the coupled elliptic system with critical exponent and logarithmic terms: $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda _{1}u+ \mu _1|u|^{2p-2}u+\beta |u|^{p-2}|v|^{p}u+\theta _1 u\log u^2, &{} \quad x\in \Omega ,\\ -\Delta v=\lambda _{2}v+ \mu _2|v|^{2p-2}v+\beta |u|^{p}|v|^{p-2}v+\theta _2 v\log v^2, &{}\quad x\in \Omega ,\\ u=v=0, &{}\quad x \in \partial \Omega , \end{array}\right. } \end{aligned}$$ where \(\Omega \subset {\mathbb R}^N\) is a bounded smooth domain, \(2p=2^*=\frac{2N}{N-2}\) is the Sobolev critical exponent. When \(N \ge 5\) , for different ranges of \(\beta ,\lambda _{i},\mu _i,\theta _{i}\) , \(i=1,2\) , we obtain existence and nonexistence results of positive solutions via variational methods. The special case \(N=4 \) was studied by Hajaiej et al. (Positive solution for an elliptic system with critical exponent and logarithmic terms, arXiv:2304.13822, 2023). Note that for \(N\ge 5\) , the critical exponent is given by \(2p\in \left( 2,4\right) \) ; whereas for \(N=4\) , it is \(2p=4\) . In the higher-dimensional cases \(N\ge 5\) brings new difficulties, and requires new ideas. Besides, we also study the Brézis–Nirenberg problem with logarithmic perturbation $$\begin{aligned} -\Delta u=\lambda u+\mu |u|^{2p-2}u+\theta u \log u^2 \quad \text { in }\Omega , \end{aligned}$$ where \(\mu >0, \theta <0\) , \(\lambda \in {\mathbb R}\) , and obtain the existence of positive local minimum and least energy solution under some certain assumptions.

具有临界指数和对数项的椭圆系统的正解:高维情况
Abstract In this paper, we consider the coupled elliptic system with critical exponent and logarithmic terms: $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda _{1}u+ \mu _1|u|^{2p-2}u+\beta |u|^{p-2}|v||^{p}u+\theta _1 u\log u^2, &{}\quad x\in \Omega ,\\ -\Delta v=\lambda _{2}v+ \mu _2|v|^{2p-2}v+\beta |u|^{p}|v|^{p-2}v+\theta _2 v\log v^2, &;{}\quad x\in \Omega ,\ u=v=0, &{}\quad x \in \partial \Omega , \end{array}\right.}\end{aligned}$$ 其中(Omega \subset {\mathbb R}^N)是一个有界的光滑域,(2p=2^*=frac{2N}{N-2}\)是索博勒夫临界指数。当 \(N \ge 5\), for different ranges of \(\beta ,\lambda _{i},\mu _i,\theta _{i}\), \(i=1,2\), we obtain existence and nonxistence results of positive solutions via variational methods.Hajaiej 等人研究了 \(N=4 \) 的特殊情况(Positive solution for an elliptic system with critical exponent and logarithmic terms, arXiv:2304.13822, 2023)。请注意,对于(N=5),临界指数由(2p÷in \left( 2,4\right) \)给出;而对于(N=4),临界指数是(2p=4)。在高维情况下,\(Nge 5\) 带来了新的困难,需要新的思路。此外,我们还研究了具有对数扰动的布雷齐斯-尼伦堡问题 $$\begin{aligned} -\Delta u=\lambda u+\mu |u|^{2p-2}u+\theta u \log u^2 \quad \text { in }\Omega , \end{aligned}$$ 其中 \(\mu >;0, \theta <0\) ,\(\lambda \in {\mathbb R}\) , 并在某些假设条件下得到正局部最小值和最小能量解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信