Rigidity of pressures of Hölder potentials and the fitting of analytic functions through them

IF 0.8 3区 数学 Q2 MATHEMATICS
LIANGANG MA, MARK POLLICOTT
{"title":"Rigidity of pressures of Hölder potentials and the fitting of analytic functions through them","authors":"LIANGANG MA, MARK POLLICOTT","doi":"10.1017/etds.2024.9","DOIUrl":null,"url":null,"abstract":"<p>The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"53 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.

霍尔德电势压力的刚性和通过它们拟合解析函数
这部著作的第一部分致力于研究具有有限多个符号的移位空间上霍尔德势的压力函数的高阶导数。通过相关随机过程的中心极限定理来描述压力函数的导数,我们发现了不同阶导数之间的一些刚性关系。这种刚性对用霍尔德势的压力函数全局拟合候选凸解析函数造成了阻碍,这回答了库切连科和夸斯的一个问题。在工作的第二部分,我们考虑用局部恒定势的压力函数拟合候选解析胚芽。我们证明,只要符号集中的符号数量足够多,所有 1 级候选胚芽都可以通过某些局部恒定势的压力函数来实现。工作中还获得了一些通过局部恒势的压力拟合 2 级胚芽的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信