{"title":"Solving convex uncertain PDE-constrained multi-dimensional fractional control problems via a new approach","authors":"Anurag Jayswal, Ayushi Baranwal, Tadeusz Antczak","doi":"10.1007/s10665-024-10338-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the class of uncertain multi-dimensional fractional control problems with the first-order PDE constraints is investigated. The robust approach and the parametric method are applied for solving such control problems. Then, robust optimality is analyzed for the considered PDE-constrained multi-dimensional fractional control problem with uncertainty. Further, the exact absolute penalty function method is used for solving control problems created in both the aforementioned approaches. Then, under appropriate convexity hypotheses, exactness of the penalization of this exact penalty function method is investigated in the case when it is used for solving the considered control problem with uncertainty. Further, an algorithm based on the used method is presented, the main goal of which is to illustrate the precise steps to solve the unconstrained multi-dimensional non-fractional control problem with uncertainty associated with the constrained fractional control problem.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"115 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10338-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the class of uncertain multi-dimensional fractional control problems with the first-order PDE constraints is investigated. The robust approach and the parametric method are applied for solving such control problems. Then, robust optimality is analyzed for the considered PDE-constrained multi-dimensional fractional control problem with uncertainty. Further, the exact absolute penalty function method is used for solving control problems created in both the aforementioned approaches. Then, under appropriate convexity hypotheses, exactness of the penalization of this exact penalty function method is investigated in the case when it is used for solving the considered control problem with uncertainty. Further, an algorithm based on the used method is presented, the main goal of which is to illustrate the precise steps to solve the unconstrained multi-dimensional non-fractional control problem with uncertainty associated with the constrained fractional control problem.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.