{"title":"Efficient approximation of solution derivatives for system of singularly perturbed time-dependent convection-diffusion PDEs on Shishkin mesh","authors":"Sonu Bose, Kaushik Mukherjee","doi":"10.1007/s10910-024-01587-8","DOIUrl":null,"url":null,"abstract":"<div><p>This article deals with a coupled system of singularly perturbed convection-diffusion parabolic partial differential equations (PDEs) possessing overlapping boundary layers. As the thickness of the layer shrinks for small diffusion parameter, efficient capturing of the solution and the diffusive flux (<i>i</i>.<i>e</i>., scaled first-order spatial derivative of the solution) leads to a difficult task. It is well-known that the classical numerical techniques have deficiencies in estimating the solution and the diffusive flux on equidistant mesh unless the mesh-size is adequately large. We aim to generate an efficient numerical approximation to the coupled system of PDEs by employing the implicit-Euler method in time and a classical finite difference scheme in space on a layer-adapted Shishkin mesh. Firstly, we discuss about parameter-uniform convergence of the numerical solution in <span>\\(C^0\\)</span>-norm followed by the error analysis for the scaled discrete space derivative and the discrete time derivative. Subsequently, the parameter-uniform error bound is established in weighted <span>\\(C^1\\)</span>-norm for global approximation to the solution and the space-time solution derivatives. The theoretical findings are verified by generating the numerical results for two test examples.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01587-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01587-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article deals with a coupled system of singularly perturbed convection-diffusion parabolic partial differential equations (PDEs) possessing overlapping boundary layers. As the thickness of the layer shrinks for small diffusion parameter, efficient capturing of the solution and the diffusive flux (i.e., scaled first-order spatial derivative of the solution) leads to a difficult task. It is well-known that the classical numerical techniques have deficiencies in estimating the solution and the diffusive flux on equidistant mesh unless the mesh-size is adequately large. We aim to generate an efficient numerical approximation to the coupled system of PDEs by employing the implicit-Euler method in time and a classical finite difference scheme in space on a layer-adapted Shishkin mesh. Firstly, we discuss about parameter-uniform convergence of the numerical solution in \(C^0\)-norm followed by the error analysis for the scaled discrete space derivative and the discrete time derivative. Subsequently, the parameter-uniform error bound is established in weighted \(C^1\)-norm for global approximation to the solution and the space-time solution derivatives. The theoretical findings are verified by generating the numerical results for two test examples.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.