Solution of the Center Problem for a Class of Polynomial Differential Systems

Pub Date : 2024-03-15 DOI:10.1007/s10114-024-0578-y
Chang Jian Liu, Jaume Llibre, Rafael Ramírez, Valentín Ramírez
{"title":"Solution of the Center Problem for a Class of Polynomial Differential Systems","authors":"Chang Jian Liu,&nbsp;Jaume Llibre,&nbsp;Rafael Ramírez,&nbsp;Valentín Ramírez","doi":"10.1007/s10114-024-0578-y","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the polynomial differential system of degree <i>m</i> of the form </p><div><div><span>$$\\eqalign{&amp;\\dot{x}=-y(1+\\mu(a_{2}x-a_{1}y))+x(\\nu(a_{1}x+a_{2}y)+\\Omega_{m-1}(x,y)),\\cr &amp;\\dot{y}=x(1+\\mu(a_{2}x-a_{1}y))+y(\\nu(a_{1}x+a_{2}y)+\\Omega_{m-1}(x,y)),}$$</span></div></div><p> where <i>μ</i> and <i>ν</i> are real numbers such that <span>\\((\\mu^{2}+\\nu^{2})(\\mu+\\nu(m-2))(a_{1}^{2}+a_{2}^{2})\\ne 0,m &gt; 2\\)</span> and Ω<sub><i>m</i>−1</sub>(<i>x</i>,<i>y</i>) is a homogenous polynomial of degree <i>m</i> − 1. A conjecture, stated in <i>J. Differential Equations</i> 2019, suggests that when <i>ν</i> = 1, this differential system has a weak center at the origin if and only if after a convenient linear change of variable (<i>x</i>,<i>y</i>) → (<i>X</i>,<i>Y</i>) the system is invariant under the transformation (<i>X</i>,<i>Y</i>,<i>t</i>) → (−<i>X</i>,<i>Y</i>, −<i>t</i>). For every degree <i>m</i> we prove the extension of this conjecture to any value of <i>ν</i> except for a finite set of values of <i>μ</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-0578-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the polynomial differential system of degree m of the form

$$\eqalign{&\dot{x}=-y(1+\mu(a_{2}x-a_{1}y))+x(\nu(a_{1}x+a_{2}y)+\Omega_{m-1}(x,y)),\cr &\dot{y}=x(1+\mu(a_{2}x-a_{1}y))+y(\nu(a_{1}x+a_{2}y)+\Omega_{m-1}(x,y)),}$$

where μ and ν are real numbers such that \((\mu^{2}+\nu^{2})(\mu+\nu(m-2))(a_{1}^{2}+a_{2}^{2})\ne 0,m > 2\) and Ωm−1(x,y) is a homogenous polynomial of degree m − 1. A conjecture, stated in J. Differential Equations 2019, suggests that when ν = 1, this differential system has a weak center at the origin if and only if after a convenient linear change of variable (x,y) → (X,Y) the system is invariant under the transformation (X,Y,t) → (−X,Y, −t). For every degree m we prove the extension of this conjecture to any value of ν except for a finite set of values of μ.

分享
查看原文
一类多项式微分方程系统的中心问题求解
考虑形式为 $$\eqalign{&\dot{x}=-y(1+\mu(a_{2}x-a_{1}y))+x(\nu(a_{1}x+a_{2}y)+\Omega_{m-1}(x,y)),\cr &;\dot{y}=x(1+\mu(a_{2}x-a_{1}y))+y(\nu(a_{1}x+a_{2}y)+\Omega_{m-1}(x,y)),}$$ 其中 μ 和 ν 是实数,使得 \((\mu^{2}+\nu^{2})(\mu+\nu(m-2))(a_{1}^{2}+a_{2}^{2})\ne 0,m >;2)且 Ωm-1(x,y) 是一个度数为 m - 1 的同源多项式。2019 年微分方程杂志》(J. Differential Equations 2019)上的一个猜想表明,当 ν = 1 时,当且仅当变量(x,y)→(X,Y)经过方便的线性变化后,该微分系统在变换(X,Y,t)→(-X,Y, -t)下不变时,该微分系统在原点处有一个弱中心。对于每个阶数 m,我们都证明了这一猜想可以扩展到除了有限的 μ 值集合之外的任何 ν 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信