{"title":"A Novel Lightweight NIDS Framework for Detecting Anomalous Data Traffic in Contemporary Networks","authors":"Yogendra Kumar, Vijay Kumar, Basant Subba","doi":"10.1142/s0218126624502281","DOIUrl":null,"url":null,"abstract":"<p>Network Intrusion Detection Systems (NIDSs) have been proposed in the literature as security tools for detecting anomalous and intrusive network data traffic. However, the existing NIDS frameworks are computation-intensive, thereby making them unsuitable for deployment in resource-constrained networks with limited computational capabilities. This paper aims to address this issue by proposing computationally efficient NIDS framework for detecting anomalous data traffic in resource-constrained networks. The proposed NIDS framework uses an ensemble-based classifier model comprising multiple classifiers, which enables it to achieve high accuracy and detection rate across a wide range of low-footprint and stealth network attacks. The proposed framework also uses <i>feature scaling</i> and <i>dimensionality reduction</i> techniques to minimize the overall computational overhead. The proposed framework consists of two stages. In the first stage, four distinct base-level classifiers are utilized. The classification probabilities of the first stage are used in the modified meta-level classifier. The modified meta-level classifier is trained on the class probabilities of the base-level classifiers combined using a novel proposed probability function. The performance of the proposed NIDS framework is evaluated on a proprietary testbed dataset and two benchmark datasets namely <i>CICIDS-</i>2017 and <i>UNSW-NB</i>15. The results reveal that the proposed NIDS framework provides better performance than the existing NIDS frameworks in terms of false positive rate, despite using a significantly lower number of input features for its analysis.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"6 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624502281","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Network Intrusion Detection Systems (NIDSs) have been proposed in the literature as security tools for detecting anomalous and intrusive network data traffic. However, the existing NIDS frameworks are computation-intensive, thereby making them unsuitable for deployment in resource-constrained networks with limited computational capabilities. This paper aims to address this issue by proposing computationally efficient NIDS framework for detecting anomalous data traffic in resource-constrained networks. The proposed NIDS framework uses an ensemble-based classifier model comprising multiple classifiers, which enables it to achieve high accuracy and detection rate across a wide range of low-footprint and stealth network attacks. The proposed framework also uses feature scaling and dimensionality reduction techniques to minimize the overall computational overhead. The proposed framework consists of two stages. In the first stage, four distinct base-level classifiers are utilized. The classification probabilities of the first stage are used in the modified meta-level classifier. The modified meta-level classifier is trained on the class probabilities of the base-level classifiers combined using a novel proposed probability function. The performance of the proposed NIDS framework is evaluated on a proprietary testbed dataset and two benchmark datasets namely CICIDS-2017 and UNSW-NB15. The results reveal that the proposed NIDS framework provides better performance than the existing NIDS frameworks in terms of false positive rate, despite using a significantly lower number of input features for its analysis.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.