A representation-learning approach for insurance pricing with images

Christopher Blier-Wong, Luc Lamontagne, Etienne Marceau
{"title":"A representation-learning approach for insurance pricing with images","authors":"Christopher Blier-Wong, Luc Lamontagne, Etienne Marceau","doi":"10.1017/asb.2024.9","DOIUrl":null,"url":null,"abstract":"Unstructured data are a promising new source of information that insurance companies may use to understand their risk portfolio better and improve the customer experience. However, these novel data sources are difficult to incorporate into existing ratemaking frameworks due to the size and format of the unstructured data. This paper proposes a framework to use street view imagery within a generalized linear model. To do so, we use representation learning to extract an embedding vector containing useful information from the image. This embedding is dense and low dimensional, making it appropriate to use within existing ratemaking models. We find that there is useful information included in street view imagery to predict the frequency of claims for certain types of perils. This model can be used as in a ratemaking framework but also opens the door to future empirical research on attempting to extract which characteristics within the image leads to increased or decreased predicted claim frequencies. Throughout, we discuss the practical difficulties (technical and social) of using this type of data for insurance pricing.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2024.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unstructured data are a promising new source of information that insurance companies may use to understand their risk portfolio better and improve the customer experience. However, these novel data sources are difficult to incorporate into existing ratemaking frameworks due to the size and format of the unstructured data. This paper proposes a framework to use street view imagery within a generalized linear model. To do so, we use representation learning to extract an embedding vector containing useful information from the image. This embedding is dense and low dimensional, making it appropriate to use within existing ratemaking models. We find that there is useful information included in street view imagery to predict the frequency of claims for certain types of perils. This model can be used as in a ratemaking framework but also opens the door to future empirical research on attempting to extract which characteristics within the image leads to increased or decreased predicted claim frequencies. Throughout, we discuss the practical difficulties (technical and social) of using this type of data for insurance pricing.
利用图像进行保险定价的表征学习方法
非结构化数据是一种很有前景的新信息来源,保险公司可以利用它来更好地了解其风险组合并改善客户体验。然而,由于非结构化数据的大小和格式,这些新数据源很难纳入现有的费率决策框架。本文提出了一个在广义线性模型中使用街景图像的框架。为此,我们利用表示学习从图像中提取包含有用信息的嵌入向量。该嵌入向量密度高、维度低,适合在现有的费率决策模型中使用。我们发现,街景图像中包含有用的信息,可用于预测某些类型危险的索赔频率。该模型可用于费率制定框架,但也为未来的实证研究打开了大门,即尝试提取图像中的哪些特征会导致预测索赔频率的增加或减少。在整个过程中,我们讨论了将此类数据用于保险定价的实际困难(技术和社会)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信