{"title":"Deep Reinforcement Learning-Based Motion Control for Unmanned Vehicles from the Perspective of Multi-Sensor Data Fusion","authors":"Hongbo Wei, Xuerong Cui, Yucheng Zhang, Haihua Chen, Jingyao Zhang","doi":"10.1142/s0218126624501858","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the vehicle position points obtained by multi-sensor fusion are taken as the observed values, and Kalman filter is combined with the vehicle kinematics equation to further improve the vehicle trajectory. To realize this, mathematical principles of deep reinforcement learning are analyzed, and the theoretical basis of reinforcement learning is also analyzed. It is proved that the controller based on dynamic model is better than the controller based on kinematics in deviation control, and the performance of the controller based on deep reinforcement learning is also verified. The simulation data show that the proportion integration differentiation (PID) controller has a better tracking effect, but it does not have the constraint ability, which leads to radical acceleration change, resulting in unstable acceleration and deceleration control. Therefore, the deep reinforcement learning controller is selected as the longitudinal velocity tracking controller. The effectiveness of lateral and longitudinal motion decoupling strategy is verified by simulation experiments.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"49 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624501858","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the vehicle position points obtained by multi-sensor fusion are taken as the observed values, and Kalman filter is combined with the vehicle kinematics equation to further improve the vehicle trajectory. To realize this, mathematical principles of deep reinforcement learning are analyzed, and the theoretical basis of reinforcement learning is also analyzed. It is proved that the controller based on dynamic model is better than the controller based on kinematics in deviation control, and the performance of the controller based on deep reinforcement learning is also verified. The simulation data show that the proportion integration differentiation (PID) controller has a better tracking effect, but it does not have the constraint ability, which leads to radical acceleration change, resulting in unstable acceleration and deceleration control. Therefore, the deep reinforcement learning controller is selected as the longitudinal velocity tracking controller. The effectiveness of lateral and longitudinal motion decoupling strategy is verified by simulation experiments.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.