On the smoothness in the weighted Triebel-Lizorkin and Besov spaces via the continuous wavelet transform with rotations

IF 0.9 3区 数学 Q2 MATHEMATICS
Jaime Navarro, Victor A. Cruz-Barriguete
{"title":"On the smoothness in the weighted Triebel-Lizorkin and Besov spaces via the continuous wavelet transform with rotations","authors":"Jaime Navarro, Victor A. Cruz-Barriguete","doi":"10.1007/s11868-024-00595-1","DOIUrl":null,"url":null,"abstract":"<p>The main goal of this paper is to show that if <span>\\(u\\in W^{m,p}(\\mathbb R^n)\\)</span> is a weak solution of <span>\\(Qu = f\\)</span> where <span>\\(f \\in X^{r,q}_{p,k}(\\mathbb R^n)\\)</span>, then <span>\\(u \\in X^{m+r,q}_{p,k}(\\mathbb R^n)\\)</span> with <span>\\(1&lt; p,q &lt; \\infty \\)</span>, <span>\\(0&lt; r &lt; 1\\)</span>, <i>k</i> is a temperate weight function in the Hörmander sense, <span>\\(Q = \\sum _{|\\beta | \\le m} c_{\\beta }\\partial ^{\\beta }\\)</span> is a linear partial differential operator of order <span>\\(m \\ge 0\\)</span> with non-zero constant coefficients <span>\\(c_{\\beta }\\)</span>, and where <span>\\(X^{r,q}_{p,k}(\\mathbb R^n)\\)</span> is either the weighted Triebel-Lizorkin or the weighted Besov space. The way to prove this result is based on the boundedness of the continuous wavelet transform with rotations.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00595-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this paper is to show that if \(u\in W^{m,p}(\mathbb R^n)\) is a weak solution of \(Qu = f\) where \(f \in X^{r,q}_{p,k}(\mathbb R^n)\), then \(u \in X^{m+r,q}_{p,k}(\mathbb R^n)\) with \(1< p,q < \infty \), \(0< r < 1\), k is a temperate weight function in the Hörmander sense, \(Q = \sum _{|\beta | \le m} c_{\beta }\partial ^{\beta }\) is a linear partial differential operator of order \(m \ge 0\) with non-zero constant coefficients \(c_{\beta }\), and where \(X^{r,q}_{p,k}(\mathbb R^n)\) is either the weighted Triebel-Lizorkin or the weighted Besov space. The way to prove this result is based on the boundedness of the continuous wavelet transform with rotations.

通过带旋转的连续小波变换论加权特里贝尔-利佐尔金空间和贝索夫空间的平滑性
本文的主要目标是证明如果 \(u\in W^{m,p}(\mathbb R^n)\)是 \(Qu = f\) 的弱解,其中 \(f\in X^{r,q}_{p,k}(\mathbb R^n)\),那么 \(u\in X^{m+r,q}_{p,k}(\mathbb R^n)\)具有 \(1<;p,q < infty\), (0< r <;1), k 是一个霍曼德意义上的权重函数, \(Q = \sum _{|\beta | \le m} c_{\beta }\partial ^{\beta }\) 是一个阶为 \(m \ge 0\) 的线性偏微分算子,具有非零常数系数 \(c_{\beta }\)、其中 \(X^{r,q}_{p,k}(\mathbb R^n)\) 是加权的 Triebel-Lizorkin 空间或加权的 Besov 空间。证明这一结果的方法是基于旋转连续小波变换的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信