Some aspects of the Floquet theory for the heat equation in a periodic domain

IF 1.1 3区 数学 Q1 MATHEMATICS
Marcus Rosenberg, Jari Taskinen
{"title":"Some aspects of the Floquet theory for the heat equation in a periodic domain","authors":"Marcus Rosenberg, Jari Taskinen","doi":"10.1007/s00028-024-00951-0","DOIUrl":null,"url":null,"abstract":"<p>We treat the linear heat equation in a periodic waveguide <span>\\(\\Pi \\subset {{\\mathbb {R}}}^d\\)</span>, with a regular enough boundary, by using the Floquet transform methods. Applying the Floquet transform <span>\\({{\\textsf{F}}}\\)</span> to the equation yields a heat equation with mixed boundary conditions on the periodic cell <span>\\(\\varpi \\)</span> of <span>\\(\\Pi \\)</span>, and we analyse the connection between the solutions of the two problems. The considerations involve a description of the spectral projections onto subspaces <span>\\({{\\mathcal {H}}}_S \\subset L^2(\\Pi )\\)</span> corresponding certain spectral components. We also show that the translated Wannier functions form an orthonormal basis in <span>\\({{\\mathcal {H}}}_S\\)</span>.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00951-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We treat the linear heat equation in a periodic waveguide \(\Pi \subset {{\mathbb {R}}}^d\), with a regular enough boundary, by using the Floquet transform methods. Applying the Floquet transform \({{\textsf{F}}}\) to the equation yields a heat equation with mixed boundary conditions on the periodic cell \(\varpi \) of \(\Pi \), and we analyse the connection between the solutions of the two problems. The considerations involve a description of the spectral projections onto subspaces \({{\mathcal {H}}}_S \subset L^2(\Pi )\) corresponding certain spectral components. We also show that the translated Wannier functions form an orthonormal basis in \({{\mathcal {H}}}_S\).

Abstract Image

周期域中热方程的 Floquet 理论的某些方面
我们使用弗洛克特变换方法来处理具有足够规则边界的周期波导 \(\Pi \子集 {{\mathbb {R}}^d\) 中的线性热方程。将 Floquet 变换 ({{textsf{F}}})应用于方程,可以得到一个在 \(\Pi \)的周期单元 \(\varpi \)上具有混合边界条件的热方程,我们分析了这两个问题的解之间的联系。这些考虑涉及到对子空间 \({{\mathcal {H}}_S \subset L^2(\Pi )\) 对应于某些谱成分的谱投影的描述。我们还证明了平移的万尼尔函数在 \({{\mathcal {H}}_S\) 中形成了一个正交基。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信