Mariam Maku Quarshie, Sergei Malykhin, and Polina Kuzhir
{"title":"Core-shell diamond-graphene needles with silicon-vacancy color centers","authors":"Mariam Maku Quarshie, Sergei Malykhin, and Polina Kuzhir","doi":"10.1364/ome.518724","DOIUrl":null,"url":null,"abstract":"Color centers in diamond nanostructures open new horizons in biomedicine, offering a biocompatible material platform for sensing temperature, pH, and magnetic field. Covering of the color centers enriched diamonds with graphene shell can essentially extend their application potential. Specifically, under irradiation with ultrashort laser pulses, the highly absorptive graphene shell can be used for excitation of a shock acoustic wave which can be used for cancer cell destruction or drug photoactivation through the Joule heating. In this study, we present a novel method for creating diamond-graphite core-shell structures. Through precise control of the growth of the graphitic layer on Single Crystal Diamond Needles (SCDNs) via vacuum annealing at 900°C for 30 minutes, we preserved 57% of the light emission from silicon-vacancy (SiV<sup>-</sup>) centers while maintaining their spectral peaks. Contrary to our expectations of reduced SiV<sup>-</sup> luminescence due to the presence of the graphitic shell, we observed that the initial high brightness of SiV<sup>-</sup> in the diamond needles persisted. This enabled us to detect SiV<sup>-</sup> luminescence spectrally, even within the core-shell structures. Our results underscore the tunability of these structures’ properties through temperature and duration control, suggesting promising prospects for their application in advanced biomedical tools with sensing capabilities.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"73 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.518724","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Color centers in diamond nanostructures open new horizons in biomedicine, offering a biocompatible material platform for sensing temperature, pH, and magnetic field. Covering of the color centers enriched diamonds with graphene shell can essentially extend their application potential. Specifically, under irradiation with ultrashort laser pulses, the highly absorptive graphene shell can be used for excitation of a shock acoustic wave which can be used for cancer cell destruction or drug photoactivation through the Joule heating. In this study, we present a novel method for creating diamond-graphite core-shell structures. Through precise control of the growth of the graphitic layer on Single Crystal Diamond Needles (SCDNs) via vacuum annealing at 900°C for 30 minutes, we preserved 57% of the light emission from silicon-vacancy (SiV-) centers while maintaining their spectral peaks. Contrary to our expectations of reduced SiV- luminescence due to the presence of the graphitic shell, we observed that the initial high brightness of SiV- in the diamond needles persisted. This enabled us to detect SiV- luminescence spectrally, even within the core-shell structures. Our results underscore the tunability of these structures’ properties through temperature and duration control, suggesting promising prospects for their application in advanced biomedical tools with sensing capabilities.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.