Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity

Weizhu Bao, Ying Ma, Chushan Wang
{"title":"Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity","authors":"Weizhu Bao, Ying Ma, Chushan Wang","doi":"10.1142/s0218202524500155","DOIUrl":null,"url":null,"abstract":"<p>We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>ρ</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>:</mo><mo>=</mo><mo>|</mo><mi>ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> is the density with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span> the wave function and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span> the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>, and optimal <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is obtained for <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn></math></span><span></span>. For the second-order Strang time-splitting method, optimal <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is established for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, and optimal <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>3</mn><mo stretchy=\"false\">/</mo><mn>2</mn></math></span><span></span> (or <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>=</mo><mn>1</mn></math></span><span></span>). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called <i>regularity compensation oscillation</i> (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity f(ρ)=ρσ, where ρ:=|ψ|2 is the density with ψ the wave function and σ>0 the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal L2-norm error bound is proved for L-potential and σ>0, and optimal H1-norm error bound is obtained for W1,4-potential and σ1/2. For the second-order Strang time-splitting method, optimal L2-norm error bound is established for H2-potential and σ1, and optimal H1-norm error bound is proved for H3-potential and σ3/2 (or σ=1). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called regularity compensation oscillation (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.

具有低正则势和非线性的非线性薛定谔方程时间分割方法的最佳误差边界
我们为具有低正则势和典型幂型非线性 f(ρ)=ρσ 的非线性薛定谔方程建立了时间分割方法的最优误差约束,其中 ρ:=|ψ|2 是密度,ψ 是波函数,σ>0 是非线性的指数。对于一阶 Lie-Trotter 时间分割方法,证明了 L∞ 电位和 σ>0 的最优 L2 规范误差约束,以及 W1,4 电位和 σ≥1/2 的最优 H1 规范误差约束。对于二阶斯特朗时间分割法,建立了 H2 电位和 σ≥1 的最优 L2 规范误差约束,证明了 H3 电位和 σ≥3/2 (或 σ=1)的最优 H1 规范误差约束。与文献中对时间分割方法的误差估计相比,我们的最优误差界要么提高了相同正则性假设下的收敛率,要么大大放宽了最优收敛阶次对势能和非线性的正则性要求。我们证明的一个关键要素是采用了一种称为正则补偿振荡(RCO)的新技术,即通过相消分析低频模式,通过解的正则性估算高频模式。我们报告了大量的数值结果,以证实我们的误差估计,并证明它们是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信