The set of representatives and explicit factorization of xn − 1 over finite fields

Pub Date : 2024-01-29 DOI:10.1142/s0219498825501701
Manjit Singh, Deepak
{"title":"The set of representatives and explicit factorization of xn − 1 over finite fields","authors":"Manjit Singh, Deepak","doi":"10.1142/s0219498825501701","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> be a positive integer and let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> be a finite field with <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> elements, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> is a prime power and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. In this paper, we give the explicit factorization of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> over <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> and count the number of its irreducible factors for the following conditions: <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>q</mi></math></span><span></span> are odd and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>rad</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. First, we present a method to obtain the set of all representatives of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-cyclotomic cosets modulo <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, where <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>=</mo><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. This set of representatives is then used to find the irreducible factors of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> and the cyclotomic polynomial <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Φ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> over <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span>. The form of irreducible factors of <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> is characterized such that the coefficients of these irreducible factors are followed by second-order linear recurring sequences.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let n be a positive integer and let 𝔽q be a finite field with q elements, where q is a prime power and gcd(n,q)=1. In this paper, we give the explicit factorization of xn1 over 𝔽q and count the number of its irreducible factors for the following conditions: n,q are odd and rad(n)|(q2+1). First, we present a method to obtain the set of all representatives of q-cyclotomic cosets modulo m, where m=gcd(n,q2+1). This set of representatives is then used to find the irreducible factors of xn1 and the cyclotomic polynomial Φn(x) over 𝔽q. The form of irreducible factors of xn1 is characterized such that the coefficients of these irreducible factors are followed by second-order linear recurring sequences.

分享
查看原文
有限域上 xn - 1 的代表集和显因式分解
设 n 为正整数,𝔽q 为有 q 个元素的有限域,其中 q 为素数幂,且 gcd(n,q)=1 。在本文中,我们给出了 xn-1 在𝔽q 上的显式因式分解,并计算了在 n,q 为奇数且 rad(n)|(q2+1) 条件下的不可还原因式的个数。首先,我们提出了一种方法来获得 q-Cyclotomic cosets modulo m 的所有代表集,其中 m=gcd(n,q2+1) 。然后,利用这个代表集找出 xn-1 的不可还原因数和在𝔽q 上的循环多项式 Φn(x)。xn-1 不可还原因子的形式特征是,这些不可还原因子的系数由二阶线性循环序列跟随。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信