Cohomology of modified Rota–Baxter Leibniz algebra of weight λ

Pub Date : 2024-01-24 DOI:10.1142/s0219498825501579
Bibhash Mondal, Ripan Saha
{"title":"Cohomology of modified Rota–Baxter Leibniz algebra of weight λ","authors":"Bibhash Mondal, Ripan Saha","doi":"10.1142/s0219498825501579","DOIUrl":null,"url":null,"abstract":"<p>Rota–Baxter operators have been paid much attention in the last few decades as they have many applications in mathematics and physics. In this paper, our object of study is modified Rota–Baxter operators on Leibniz algebras. We investigate modified Rota–Baxter Leibniz algebras from the cohomological point of view. We study a one-parameter formal deformation theory of modified Rota–Baxter Leibniz algebras and define the associated deformation cohomology that controls the deformation. Finally, as an application, we characterize equivalence classes of abelian extensions in terms of second cohomology groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rota–Baxter operators have been paid much attention in the last few decades as they have many applications in mathematics and physics. In this paper, our object of study is modified Rota–Baxter operators on Leibniz algebras. We investigate modified Rota–Baxter Leibniz algebras from the cohomological point of view. We study a one-parameter formal deformation theory of modified Rota–Baxter Leibniz algebras and define the associated deformation cohomology that controls the deformation. Finally, as an application, we characterize equivalence classes of abelian extensions in terms of second cohomology groups.

分享
查看原文
权重 λ 的修正罗塔-巴克斯特莱布尼兹代数的同调
由于 Rota-Baxter 算子在数学和物理学中的广泛应用,它在过去几十年里受到了广泛关注。本文的研究对象是莱布尼兹代数上的修正罗塔-巴克斯特算子。我们从同调的角度研究修正的 Rota-Baxter 莱布尼兹代数。我们研究了修正 Rota-Baxter 莱布尼兹代数的单参数形式变形理论,并定义了控制变形的相关变形同调。最后,作为一个应用,我们用第二同调群来描述无性扩展的等价类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信