Yeray Galán López, Cristian González García, Vicente García Díaz, Edward Rolando Núñez Valdez, Alberto Gómez Gómez
{"title":"Interpretability of rectangle packing solutions with Monte Carlo tree search","authors":"Yeray Galán López, Cristian González García, Vicente García Díaz, Edward Rolando Núñez Valdez, Alberto Gómez Gómez","doi":"10.1007/s10732-024-09525-2","DOIUrl":null,"url":null,"abstract":"<p>Packing problems have been studied for a long time and have great applications in real-world scenarios. In recent times, with problems in the industrial world increasing in size, exact algorithms are often not a viable option and faster approaches are needed. We study Monte Carlo tree search, a random sampling algorithm that has gained great importance in literature in the last few years. We propose three approaches based on MCTS and its integration with metaheuristic algorithms or deep learning models to obtain approximated solutions to packing problems that are also interpretable by means of MCTS exploration and from which knowledge can be extracted. We focus on two-dimensional rectangle packing problems in our experimentation and use several well known benchmarks from literature to compare our solutions with existing approaches and offer a view on the potential uses for knowledge extraction from our method. We manage to match the quality of state-of-the-art methods, with improvements in time with respect to some of them and greater interpretability.</p>","PeriodicalId":54810,"journal":{"name":"Journal of Heuristics","volume":"21 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heuristics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10732-024-09525-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Packing problems have been studied for a long time and have great applications in real-world scenarios. In recent times, with problems in the industrial world increasing in size, exact algorithms are often not a viable option and faster approaches are needed. We study Monte Carlo tree search, a random sampling algorithm that has gained great importance in literature in the last few years. We propose three approaches based on MCTS and its integration with metaheuristic algorithms or deep learning models to obtain approximated solutions to packing problems that are also interpretable by means of MCTS exploration and from which knowledge can be extracted. We focus on two-dimensional rectangle packing problems in our experimentation and use several well known benchmarks from literature to compare our solutions with existing approaches and offer a view on the potential uses for knowledge extraction from our method. We manage to match the quality of state-of-the-art methods, with improvements in time with respect to some of them and greater interpretability.
期刊介绍:
The Journal of Heuristics provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly. It fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems. It considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.
The journal presents practical applications, theoretical developments, decision analysis models that consider issues of rational decision making with limited information, artificial intelligence-based heuristics applied to a wide variety of problems, learning paradigms, and computational experimentation.
Officially cited as: J Heuristics
Provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly.
Fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems.
Considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.