Multi-grained Document Modeling for Search Result Diversification

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhirui Deng, Zhicheng Dou, Zhan Su, Ji-Rong Wen
{"title":"Multi-grained Document Modeling for Search Result Diversification","authors":"Zhirui Deng, Zhicheng Dou, Zhan Su, Ji-Rong Wen","doi":"10.1145/3652852","DOIUrl":null,"url":null,"abstract":"<p>Search result diversification plays a crucial role in improving users’ search experience by providing users with documents covering more subtopics. Previous studies have made great progress in leveraging inter-document interactions to measure the similarity among documents. However, different parts of the document may embody different subtopics and existing models ignore the subtle similarities and differences of content within each document. In this paper, we propose a hierarchical attention framework to combine intra-document interactions with inter-document interactions in a complementary manner in order to conduct multi-grained document modeling. Specifically, we separate the document into passages to model the document content from multi-grained perspectives. Then, we design stacked interaction blocks to conduct inter-document and intra-document interactions. Moreover, to measure the subtopic coverage of each document more accurately, we propose a passage-aware document-subtopic interaction to perform fine-grained document-subtopic interaction. Experimental results demonstrate that our model achieves state-of-the-art performance compared with existing methods.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652852","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Search result diversification plays a crucial role in improving users’ search experience by providing users with documents covering more subtopics. Previous studies have made great progress in leveraging inter-document interactions to measure the similarity among documents. However, different parts of the document may embody different subtopics and existing models ignore the subtle similarities and differences of content within each document. In this paper, we propose a hierarchical attention framework to combine intra-document interactions with inter-document interactions in a complementary manner in order to conduct multi-grained document modeling. Specifically, we separate the document into passages to model the document content from multi-grained perspectives. Then, we design stacked interaction blocks to conduct inter-document and intra-document interactions. Moreover, to measure the subtopic coverage of each document more accurately, we propose a passage-aware document-subtopic interaction to perform fine-grained document-subtopic interaction. Experimental results demonstrate that our model achieves state-of-the-art performance compared with existing methods.

多级文档建模促进搜索结果多样化
通过向用户提供涵盖更多子主题的文档,搜索结果多样化在改善用户搜索体验方面发挥着至关重要的作用。以往的研究在利用文档间交互来衡量文档相似性方面取得了很大进展。然而,文档的不同部分可能包含不同的子主题,现有模型忽略了每个文档内部内容的细微异同。在本文中,我们提出了一个分层注意力框架,以互补的方式将文档内交互与文档间交互结合起来,从而进行多粒度文档建模。具体来说,我们将文档分成若干段落,从多级视角对文档内容进行建模。然后,我们设计了堆叠交互块来进行文档间和文档内的交互。此外,为了更准确地衡量每篇文档的子主题覆盖率,我们提出了一种段落感知的文档-子主题交互,以实现细粒度的文档-子主题交互。实验结果表明,与现有方法相比,我们的模型达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信