{"title":"Two-Dimensional Molybdenum Disulfide–Water: Intercalation Processes, New Functional Properties, and Application Prospects","authors":"L. M. Kulikov","doi":"10.1007/s11106-024-00402-y","DOIUrl":null,"url":null,"abstract":"<p>Modern research findings for the interaction of two-dimensional molybdenum disulfide (primarily in the nanocrystalline state) with water and air moisture were analyzed. Studies focusing on water intercalation/deintercalation processes and mechanisms in nanocrystalline d-transition metal dichalcogenides (TMDs, mainly 2D MoS<sub>2</sub>) are at their initial stage. Intercalated water was found to significantly influence the multifunctional properties of 2D MoS<sub>2</sub> nanostructures and microsized powders. The need for interdisciplinary studies of 2D TMD nanostructures intercalated with water through complex mechanisms was justified. In particular, the studies should include the development of intercalation/deintercalation nanotechnologies, establishment of interrelationships between the intercalation processes/mechanisms and the state of actual surfaces and features of actual nanostructures, determination of differences in intercalation processes and mechanisms for various semiconductor and metallic nanostructures, and design of multifunctional low-dimensional van der Waals nanomaterials with controllable properties based on nanosized 2D/nD heterostructures (n = = 0, 1, 2, 3) intercalated with water. Promising applications for 2D MoS<sub>2</sub> nanostructures intercalated with water are as follows: nanotechnologies of heterostructures with abnormal water properties, tribological characteristics of solid lubricants with moisture present, nanotechnologies using water or aqueous solutions, sorbents and photocatalysts for water purification, electro(photo, piezo)catalysts for the production of hydrogen and oxygen through water electrolysis, as well as hydrovoltaic effects, air humidity sensors, biosensors, and disinfection agents (COVID-19 pandemic).</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"390 - 399"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00402-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern research findings for the interaction of two-dimensional molybdenum disulfide (primarily in the nanocrystalline state) with water and air moisture were analyzed. Studies focusing on water intercalation/deintercalation processes and mechanisms in nanocrystalline d-transition metal dichalcogenides (TMDs, mainly 2D MoS2) are at their initial stage. Intercalated water was found to significantly influence the multifunctional properties of 2D MoS2 nanostructures and microsized powders. The need for interdisciplinary studies of 2D TMD nanostructures intercalated with water through complex mechanisms was justified. In particular, the studies should include the development of intercalation/deintercalation nanotechnologies, establishment of interrelationships between the intercalation processes/mechanisms and the state of actual surfaces and features of actual nanostructures, determination of differences in intercalation processes and mechanisms for various semiconductor and metallic nanostructures, and design of multifunctional low-dimensional van der Waals nanomaterials with controllable properties based on nanosized 2D/nD heterostructures (n = = 0, 1, 2, 3) intercalated with water. Promising applications for 2D MoS2 nanostructures intercalated with water are as follows: nanotechnologies of heterostructures with abnormal water properties, tribological characteristics of solid lubricants with moisture present, nanotechnologies using water or aqueous solutions, sorbents and photocatalysts for water purification, electro(photo, piezo)catalysts for the production of hydrogen and oxygen through water electrolysis, as well as hydrovoltaic effects, air humidity sensors, biosensors, and disinfection agents (COVID-19 pandemic).
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.