{"title":"Harary and hyper-Wiener indices of some graph operations","authors":"S. Balamoorthy, T. Kavaskar, K. Vinothkumar","doi":"10.1186/s13660-024-03112-6","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the Harary index and the hyper-Wiener index of the H-generalized join of graphs and the generalized corona product of graphs. As a consequence, we deduce some of the results in (Das et al. in J. Inequal. Appl. 2013:339, 2013) and (Khalifeh et al. in Comput. Math. Appl. 56:1402–1407, 2008). Moreover, we calculate the Harary index and the hyper-Wiener index of the ideal-based zero-divisor graph of a ring.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"24 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03112-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we obtain the Harary index and the hyper-Wiener index of the H-generalized join of graphs and the generalized corona product of graphs. As a consequence, we deduce some of the results in (Das et al. in J. Inequal. Appl. 2013:339, 2013) and (Khalifeh et al. in Comput. Math. Appl. 56:1402–1407, 2008). Moreover, we calculate the Harary index and the hyper-Wiener index of the ideal-based zero-divisor graph of a ring.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.