The maximum principle for optimal control of mean-field FBSDE driving by Teugels martingales with terminal state constraints

Zhen Huang, Ying Wang, Xiangyun Lin
{"title":"The maximum principle for optimal control of mean-field FBSDE driving by Teugels martingales with terminal state constraints","authors":"Zhen Huang, Ying Wang, Xiangyun Lin","doi":"10.1002/oca.3117","DOIUrl":null,"url":null,"abstract":"This article studies the problem of optimal control with state constraints for mean-field type stochastic systems, which is governed by a fully coupled forward-backward stochastic differential equation with Teugels martingales. In this system, the coefficients contain not only the state processes but also its expectation value, and the cost function is of mean-field type as well. We use an equivalent backward formulation to deal with the terminal state constraint, and then we obtain a stochastic maximum principle by Ekeland's variational principle. In addition, we discuss a stochastic linear-quadratic control problem with state constraints.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the problem of optimal control with state constraints for mean-field type stochastic systems, which is governed by a fully coupled forward-backward stochastic differential equation with Teugels martingales. In this system, the coefficients contain not only the state processes but also its expectation value, and the cost function is of mean-field type as well. We use an equivalent backward formulation to deal with the terminal state constraint, and then we obtain a stochastic maximum principle by Ekeland's variational principle. In addition, we discuss a stochastic linear-quadratic control problem with state constraints.
带有终端状态约束的 Teugels martingales 驱动均场 FBSDE 优化控制的最大原则
本文研究的是均值场型随机系统的带状态约束的最优控制问题,该系统由一个具有 Teugels martingales 的全耦合前向后向随机微分方程支配。在这个系统中,系数不仅包含状态过程,还包含其期望值,成本函数也是均值场类型的。我们使用等效后向公式来处理末端状态约束,然后通过埃克兰变异原理得到随机最大原理。此外,我们还讨论了一个带状态约束的随机线性二次控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信