Remarks on integrability of N=1 supersymmetric Ruijsenaars-Schneider three-body models

Anton Galajinsky
{"title":"Remarks on integrability of N=1 supersymmetric Ruijsenaars-Schneider three-body models","authors":"Anton Galajinsky","doi":"arxiv-2403.09204","DOIUrl":null,"url":null,"abstract":"Integrability of N=1 supersymmetric Ruijsenaars-Schneider three-body models\nbased upon the potentials W(x)=2/x, W(x)=2/sin(x), and W(x)=2/sinh(x) is\nproven. The problem of constructing an algebraically resolvable set of\nGrassmann-odd constants of motion is reduced to finding a triplet of vectors\nsuch that all their scalar products can be expressed in terms of the original\nbosonic first integrals. The supersymmetric generalizations are used to build\nnovel integrable (iso)spin extensions of the respective Ruijsenaars-Schneider\nthree-body systems.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.09204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrability of N=1 supersymmetric Ruijsenaars-Schneider three-body models based upon the potentials W(x)=2/x, W(x)=2/sin(x), and W(x)=2/sinh(x) is proven. The problem of constructing an algebraically resolvable set of Grassmann-odd constants of motion is reduced to finding a triplet of vectors such that all their scalar products can be expressed in terms of the original bosonic first integrals. The supersymmetric generalizations are used to build novel integrable (iso)spin extensions of the respective Ruijsenaars-Schneider three-body systems.
关于 N=1 超对称鲁伊塞纳尔斯-施耐德三体模型可整性的评论
证明了基于势W(x)=2/x、W(x)=2/sin(x)和W(x)=2/sinh(x)的N=1超对称Ruijsenaars-Schneider三体模型的积分性。构建一组可代数解析的格拉斯曼-多运动常数的问题被简化为寻找一个向量三元组,使得它们的所有标量积都可以用原来的玻色初积分来表示。超对称泛化被用来建立各自的鲁伊塞纳斯-施耐德三体系统的新颖可积分(等)自旋扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信