Spectral gap estimates for mixed p-spin models at high temperature

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Arka Adhikari, Christian Brennecke, Changji Xu, Horng-Tzer Yau
{"title":"Spectral gap estimates for mixed p-spin models at high temperature","authors":"Arka Adhikari, Christian Brennecke, Changji Xu, Horng-Tzer Yau","doi":"10.1007/s00440-024-01261-9","DOIUrl":null,"url":null,"abstract":"<p>We consider general mixed <i>p</i>-spin mean field spin glass models and provide a method to prove that the spectral gap of the Dirichlet form associated with the Gibbs measure is of order one at sufficiently high temperature. Our proof is based on an iteration scheme relating the spectral gap of the <i>N</i>-spin system to that of suitably conditioned subsystems.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01261-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider general mixed p-spin mean field spin glass models and provide a method to prove that the spectral gap of the Dirichlet form associated with the Gibbs measure is of order one at sufficiently high temperature. Our proof is based on an iteration scheme relating the spectral gap of the N-spin system to that of suitably conditioned subsystems.

高温下混合 p-自旋模型的谱隙估计值
我们考虑了一般的混合 p-自旋均场自旋玻璃模型,并提供了一种方法来证明在足够高的温度下,与吉布斯量相关的 Dirichlet 形式的谱间隙是一阶的。我们的证明基于一个迭代方案,它将 N-自旋系统的谱间隙与适当条件的子系统的谱间隙联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信