Signed permutohedra, delta-matroids, and beyond

IF 1.5 1区 数学 Q1 MATHEMATICS
Christopher Eur, Alex Fink, Matt Larson, Hunter Spink
{"title":"Signed permutohedra, delta-matroids, and beyond","authors":"Christopher Eur, Alex Fink, Matt Larson, Hunter Spink","doi":"10.1112/plms.12592","DOIUrl":null,"url":null,"abstract":"We establish a connection between the algebraic geometry of the type <mjx-container aria-label=\"upper B\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/44e471ce-ada7-40ff-b8f5-eff2b25d8b7e/plms12592-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\">B</mi>$B$</annotation></semantics></math></mjx-assistive-mml></mjx-container> permutohedral toric variety and the combinatorics of delta-matroids. Using this connection, we compute the volume and lattice point counts of type <mjx-container aria-label=\"upper B\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/46703655-88b5-4eb6-9bee-0971456baf6b/plms12592-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\">B</mi>$B$</annotation></semantics></math></mjx-assistive-mml></mjx-container> generalized permutohedra. Applying tropical Hodge theory to a new framework of “tautological classes of delta-matroids,” modeled after certain vector bundles associated to realizable delta-matroids, we establish the log-concavity of a Tutte-like invariant for a broad family of delta-matroids that includes all realizable delta-matroids. Our results include new log-concavity statements for all (ordinary) matroids as special cases.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12592","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a connection between the algebraic geometry of the type permutohedral toric variety and the combinatorics of delta-matroids. Using this connection, we compute the volume and lattice point counts of type generalized permutohedra. Applying tropical Hodge theory to a new framework of “tautological classes of delta-matroids,” modeled after certain vector bundles associated to realizable delta-matroids, we establish the log-concavity of a Tutte-like invariant for a broad family of delta-matroids that includes all realizable delta-matroids. Our results include new log-concavity statements for all (ordinary) matroids as special cases.
有符号正多面体、三角矩阵及其他
我们建立了 B$B$型广义环面体的代数几何与 delta-matroids组合学之间的联系。利用这种联系,我们计算了 B$B$ 型广义围面的体积和晶格点数。我们将热带霍奇理论应用于"△形同调类 "的新框架(以与可实现△形相关的某些向量束为模型),为包括所有可实现△形的△形广族建立了类似图特不变式的对数收敛性。我们的结果包括所有(普通)矩阵作为特例的新对数凹性声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信