{"title":"Tollmien–Schlichting waves in the subsonic regime","authors":"Nader Masmoudi, Yuxi Wang, Di Wu, Zhifei Zhang","doi":"10.1112/plms.12588","DOIUrl":null,"url":null,"abstract":"The Tollmien–Schlichting (T-S) waves play a key role in the early stages of boundary layer transition. In a breakthrough work, Grenier, Guo, and Nguyen gave the first rigorous construction of the T-S waves of temporal mode for the incompressible fluid. Yang and Zhang recently made an important contribution by constructing the compressible T-S waves of temporal mode for certain boundary layer profiles with Mach number <mjx-container aria-label=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mfrac data-semantic-children=\"2,4\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"fraction\"><mjx-frac><mjx-num><mjx-nstrut></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line></mjx-line><mjx-row><mjx-den><mjx-dstrut></mjx-dstrut><mjx-msqrt data-semantic-children=\"3\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\" size=\"s\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.164em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-box></mjx-sqrt></mjx-msqrt></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/b1bd1e98-17e2-46e4-980c-ac65e953555e/plms12588-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">m</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,<\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><</mo><mfrac data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"fraction\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><msqrt data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></msqrt></mfrac></mrow>$m&lt;\\frac{1}{\\sqrt 3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. In this paper, we construct the T-S waves of both temporal mode and spatial mode to the linearized compressible Navier–Stokes system around the boundary layer flow in the whole subsonic regime <mjx-container aria-label=\"m less than 1\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"m less than 1\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c911aa9e-ab7e-499f-b059-ff406318d30e/plms12588-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"m less than 1\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">m</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,<\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow>$m&lt;1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, including the Blasius profile. Our approach is based on a novel iteration scheme between the quasi-incompressible and quasi-compressible systems, with a key ingredient being the solution of an Orr–Sommerfeld-type equation using a new Airy–Airy–Rayleigh iteration instead of Rayleigh–Airy iteration introduced by Grenier, Guo, and Nguyen. We believe that the method developed in this work can be applied in solving other related problems for subsonic flows.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"56 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12588","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Tollmien–Schlichting (T-S) waves play a key role in the early stages of boundary layer transition. In a breakthrough work, Grenier, Guo, and Nguyen gave the first rigorous construction of the T-S waves of temporal mode for the incompressible fluid. Yang and Zhang recently made an important contribution by constructing the compressible T-S waves of temporal mode for certain boundary layer profiles with Mach number . In this paper, we construct the T-S waves of both temporal mode and spatial mode to the linearized compressible Navier–Stokes system around the boundary layer flow in the whole subsonic regime , including the Blasius profile. Our approach is based on a novel iteration scheme between the quasi-incompressible and quasi-compressible systems, with a key ingredient being the solution of an Orr–Sommerfeld-type equation using a new Airy–Airy–Rayleigh iteration instead of Rayleigh–Airy iteration introduced by Grenier, Guo, and Nguyen. We believe that the method developed in this work can be applied in solving other related problems for subsonic flows.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.