{"title":"Online concept evolution detection based on active learning","authors":"Husheng Guo, Hai Li, Lu Cong, Wenjian Wang","doi":"10.1007/s10618-024-01011-4","DOIUrl":null,"url":null,"abstract":"<p>Concept evolution detection is an important and difficult problem in streaming data mining. When the labeled samples in streaming data insufficient to reflect the training data distribution, it will often further restrict the detection performance. This paper proposed a concept evolution detection method based on active learning (CE_AL). Firstly, the initial classifiers are constructed by a small number of labeled samples. The sample areas are divided into the automatic labeling and the active labeling areas according to the relationship between the classifiers of different categories. Secondly, for online new coming samples, according to their different areas, two strategies based on the automatic learning-based model labeling and active learning-based expert labeling are adopted respectively, which can improve the online learning performance with only a small number of labeled samples. Besides, the strategy of “data enhance” combined with “model enhance” is adopted to accelerate the convergence of the evolution category detection model. The experimental results show that the proposed CE_AL method can enhance the detection performance of concept evolution and realize efficient learning in an unstable environment by labeling a small number of key samples.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01011-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Concept evolution detection is an important and difficult problem in streaming data mining. When the labeled samples in streaming data insufficient to reflect the training data distribution, it will often further restrict the detection performance. This paper proposed a concept evolution detection method based on active learning (CE_AL). Firstly, the initial classifiers are constructed by a small number of labeled samples. The sample areas are divided into the automatic labeling and the active labeling areas according to the relationship between the classifiers of different categories. Secondly, for online new coming samples, according to their different areas, two strategies based on the automatic learning-based model labeling and active learning-based expert labeling are adopted respectively, which can improve the online learning performance with only a small number of labeled samples. Besides, the strategy of “data enhance” combined with “model enhance” is adopted to accelerate the convergence of the evolution category detection model. The experimental results show that the proposed CE_AL method can enhance the detection performance of concept evolution and realize efficient learning in an unstable environment by labeling a small number of key samples.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.