Research on Ghost Imaging Method Based on Binocular Vision Matching Fusion

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Hualong Ye, Daidou Guo, Tongxu Xu
{"title":"Research on Ghost Imaging Method Based on Binocular Vision Matching Fusion","authors":"Hualong Ye,&nbsp;Daidou Guo,&nbsp;Tongxu Xu","doi":"10.1007/s10946-024-10192-8","DOIUrl":null,"url":null,"abstract":"<div><p>In order to meet the visual characteristics of human eyes, in this paper, we propose a ghost imaging method based on binocular vision matching fusion. The imaging process of the left-eye camera and the right-eye camera in binocular vision system is realized, using ghost imaging algorithm, and its weak signal imaging characteristics can effectively compensate the parallax between the left-eye camera and the right-eye camera. The Speeded Up Robust Features algorithm is used to match the feature points of the two sub-images. Combined with the fusion algorithm of New Sum of Modified Laplacian, the two sub-images after registration are fused to obtain a clearer image. Whether from the visual perception (human vision) or objective analysis (CC, SSIM, IE, RMSE, PSNR, and BER), it can be proved that the proposed scheme has better image quality, better fidelity and robustness, and is closer to the ideal image, which provides a new method for binocular vision imaging technology.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"45 1","pages":"91 - 105"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10192-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to meet the visual characteristics of human eyes, in this paper, we propose a ghost imaging method based on binocular vision matching fusion. The imaging process of the left-eye camera and the right-eye camera in binocular vision system is realized, using ghost imaging algorithm, and its weak signal imaging characteristics can effectively compensate the parallax between the left-eye camera and the right-eye camera. The Speeded Up Robust Features algorithm is used to match the feature points of the two sub-images. Combined with the fusion algorithm of New Sum of Modified Laplacian, the two sub-images after registration are fused to obtain a clearer image. Whether from the visual perception (human vision) or objective analysis (CC, SSIM, IE, RMSE, PSNR, and BER), it can be proved that the proposed scheme has better image quality, better fidelity and robustness, and is closer to the ideal image, which provides a new method for binocular vision imaging technology.

基于双目视觉匹配融合的幽灵成像方法研究
针对人眼的视觉特点,本文提出了一种基于双目视觉匹配融合的鬼影成像方法。利用鬼影成像算法,实现了双目视觉系统中左眼摄像头和右眼摄像头的成像过程,其弱信号成像特性能有效补偿左眼摄像头和右眼摄像头之间的视差。采用加速鲁棒特征算法对两幅子图像的特征点进行匹配。结合新修正拉普拉卡方和的融合算法,将配准后的两幅子图像进行融合,从而获得更清晰的图像。无论是从视觉感知(人眼视觉)还是客观分析(CC、SSIM、IE、RMSE、PSNR 和 BER),都可以证明所提出的方案具有更好的图像质量、更高的保真度和鲁棒性,更接近理想图像,为双目视觉成像技术提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
22.20%
发文量
73
审稿时长
2 months
期刊介绍: The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including: laser physics; laser interaction with matter; properties of laser beams; laser thermonuclear fusion; laser chemistry; quantum and nonlinear optics; optoelectronics; solid state, gas, liquid, chemical, and semiconductor lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信