{"title":"Testing the Significance of Ranked Gene Sets in Genome-Wide Transcriptome Profiling Data Using Weighted Rank Correlation Statistics","authors":"Min Yao, Hao He, Binyu Wang, Xinmiao Huang, Sunli Zheng, Jianwu Wang, Xuejun Gao, Tinghua Huang","doi":"10.2174/0113892029280470240306044159","DOIUrl":null,"url":null,"abstract":"Objective: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called \"Flaver\" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":"2012 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892029280470240306044159","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called "Flaver" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.
期刊介绍:
Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock.
Current Genomics publishes three types of articles including:
i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section.
ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries.
iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.