{"title":"Phase-Field Approximation of a Vectorial, Geometrically Nonlinear Cohesive Fracture Energy","authors":"Sergio Conti, Matteo Focardi, Flaviana Iurlano","doi":"10.1007/s00205-024-01962-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a family of vectorial models for cohesive fracture, which may incorporate <span>\\(\\textrm{SO}(n)\\)</span>-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as <span>\\(\\Gamma \\)</span>-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01962-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01962-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a family of vectorial models for cohesive fracture, which may incorporate \(\textrm{SO}(n)\)-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as \(\Gamma \)-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.