Phase-Field Approximation of a Vectorial, Geometrically Nonlinear Cohesive Fracture Energy

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Sergio Conti, Matteo Focardi, Flaviana Iurlano
{"title":"Phase-Field Approximation of a Vectorial, Geometrically Nonlinear Cohesive Fracture Energy","authors":"Sergio Conti,&nbsp;Matteo Focardi,&nbsp;Flaviana Iurlano","doi":"10.1007/s00205-024-01962-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a family of vectorial models for cohesive fracture, which may incorporate <span>\\(\\textrm{SO}(n)\\)</span>-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as <span>\\(\\Gamma \\)</span>-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01962-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01962-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a family of vectorial models for cohesive fracture, which may incorporate \(\textrm{SO}(n)\)-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as \(\Gamma \)-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.

矢量几何非线性内聚断裂能的相场近似值
我们考虑了内聚断裂的一系列矢量模型,这些模型可能包含 \(\textrm{SO}(n)\) -不变量。变形属于有界变化的广义函数空间,能量包含(弹性)体积能、集中在断裂表面的依赖于开口的跃迁能以及代表弥散损伤的康托尔部分。我们证明,这类函数可以自然地得到一个适当相场模型的(\γ\)极限。进入极限函数的能量密度可以用相场近似中出现的能量密度的部分隐含方式来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信