Imane Akjouj, Matthieu Barbier, Maxime Clenet, Walid Hachem, Mylène Maïda, François Massol, Jamal Najim, Viet Chi Tran
{"title":"Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices","authors":"Imane Akjouj, Matthieu Barbier, Maxime Clenet, Walid Hachem, Mylène Maïda, François Massol, Jamal Najim, Viet Chi Tran","doi":"10.1098/rspa.2023.0284","DOIUrl":null,"url":null,"abstract":"<p>Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form\n<span><math display=\"block\"><mfrac><mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\"false\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span>where <span><math><mi>N</mi></math></span><span></span> represents the number of species and <span><math><msub><mi>x</mi><mi>i</mi></msub></math></span><span></span>, the abundance of species <span><math><mi>i</mi></math></span><span></span>. Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to\n<span><math display=\"block\"><msub><mi>ϕ</mi><mi>i</mi></msub><mo stretchy=\"false\">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>N</mi></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msub><mi>r</mi><mi>i</mi></msub><mo>−</mo><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><msub><mrow><mo stretchy=\"false\">(</mo><mi>Γ</mi><mrow><mtext mathvariant=\"bold\">x</mtext></mrow><mo stretchy=\"false\">)</mo></mrow><mi>i</mi></msub><mo>,</mo></math></span><span></span>play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, <span><math><msub><mi>r</mi><mi>i</mi></msub></math></span><span></span> is the intrinsic growth of species <span><math><mi>i</mi></math></span><span></span> and <span><math><mi>Γ</mi></math></span><span></span> stands for the interaction matrix: <span><math><msub><mi>Γ</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span><span></span> represents the effect of species <span><math><mi>j</mi></math></span><span></span> over species <span><math><mi>i</mi></math></span><span></span>. For large <span><math><mi>N</mi></math></span><span></span>, estimating matrix <span><math><mi>Γ</mi></math></span><span></span> is often an overwhelming task and an alternative is to draw <span><math><mi>Γ</mi></math></span><span></span> at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0284","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form
where represents the number of species and , the abundance of species . Among these families of coupled differential equations, Lotka–Volterra (LV) equations, corresponding to
play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, is the intrinsic growth of species and stands for the interaction matrix: represents the effect of species over species . For large , estimating matrix is often an overwhelming task and an alternative is to draw at random, parameterizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on random matrix theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large RMT. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.
生态系统是典型的复杂动力系统,通常由形式为dxidt=xiji(x1,...,xN)的耦合微分方程模拟,其中 N 代表物种数量,xi 代表物种 i 的丰度。在这些耦合微分方程族中,Lotka-Volterra(LV)方程(对应于 ji(x1,...,xN)=ri-xi+(Γx)i)发挥着重要作用,因为 LV 模型在复杂性和可操作性之间进行了可接受的权衡。这里,ri 是物种 i 的内在增长,Γ 代表相互作用矩阵:Γij表示物种 j 对物种 i 的影响。对于大 N,估计矩阵Γ往往是一项艰巨的任务,另一种方法是随机绘制Γ,通过有限的模型特征参数化其统计分布。处理大型随机矩阵时,我们自然要依赖随机矩阵理论(RMT)。这篇综述文章旨在概述理论生态学与大型随机矩阵理论交界处的工作。文章面向跨学科读者,涵盖理论生态学、复杂系统、统计物理学和数学生物学。
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.