{"title":"Generating new gravitational solutions by matrix multiplication","authors":"M. Cristina Câmara, Gabriel Lopes Cardoso","doi":"10.1098/rspa.2023.0857","DOIUrl":null,"url":null,"abstract":"<p>Explicit solutions to the nonlinear field equations of some gravitational theories can be obtained, by means of a Riemann–Hilbert approach, from a canonical Wiener–Hopf factorization of certain matrix functions called monodromy matrices. In this paper, we describe other types of factorization from which solutions can be constructed in a similar way. Our approach is based on an invariance problem, which does not constitute a Riemann–Hilbert problem and allows to construct solutions that could not have been obtained by Wiener–Hopf factorization of a monodromy matrix. It gives rise to a novel solution generating method based on matrix multiplications. We show, in particular, that new solutions can be obtained by multiplicative deformation of the canonical Wiener–Hopf factorization, provided the latter exists, and that one can superpose such solutions. Examples of applications include Kasner, Einstein–Rosen wave and gravitational pulse wave solutions.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0857","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Explicit solutions to the nonlinear field equations of some gravitational theories can be obtained, by means of a Riemann–Hilbert approach, from a canonical Wiener–Hopf factorization of certain matrix functions called monodromy matrices. In this paper, we describe other types of factorization from which solutions can be constructed in a similar way. Our approach is based on an invariance problem, which does not constitute a Riemann–Hilbert problem and allows to construct solutions that could not have been obtained by Wiener–Hopf factorization of a monodromy matrix. It gives rise to a novel solution generating method based on matrix multiplications. We show, in particular, that new solutions can be obtained by multiplicative deformation of the canonical Wiener–Hopf factorization, provided the latter exists, and that one can superpose such solutions. Examples of applications include Kasner, Einstein–Rosen wave and gravitational pulse wave solutions.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.