Changbo Du , Ben Niu , Fu Yi , Meng Wang , Xinqi Jiang
{"title":"Electroosmosis of gold tailings under multiple electrokinetic geosynthetics electrodes","authors":"Changbo Du , Ben Niu , Fu Yi , Meng Wang , Xinqi Jiang","doi":"10.1016/j.geotexmem.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In dry-stack tailing ponds with high fine-grained content, a high long-term saturation line can lead to dam failure. Electroosmotic consolidation is an effective method for reducing dam saturation lines. However, traditional electrodes have low corrosion resistance and poor contact, which limits the development of electroosmotic drainage technology for tailings. In this study, an electroosmotic drainage device, an electrokinetic geosynthetic (EKG) electrode, was designed. The influence law of the electrode material, potential gradient, and number of electrodes on the water drainage, current, and resistance was analyzed. The results show that the EKG electrode has excellent corrosion resistance, with its weight loss after electroosmosis, water drainage, and equivalent allowable current being 1.67%, 122%, and ∼2.3 times that of a copper electrode, respectively. Furthermore, it was found that the optimal potential gradient was 1.2 V/cm, and the water drainage cannot be improved by an exceedingly high potential gradient. The current pathway in the test box was in parallel, and the water drainage increased to 410% and the contact resistance decreased by 83% when the number of electrodes was four. These results and novel methodology provide new ideas for EKG electrode design and represent an effective method for saturation line control in gold tailing ponds.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000232","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In dry-stack tailing ponds with high fine-grained content, a high long-term saturation line can lead to dam failure. Electroosmotic consolidation is an effective method for reducing dam saturation lines. However, traditional electrodes have low corrosion resistance and poor contact, which limits the development of electroosmotic drainage technology for tailings. In this study, an electroosmotic drainage device, an electrokinetic geosynthetic (EKG) electrode, was designed. The influence law of the electrode material, potential gradient, and number of electrodes on the water drainage, current, and resistance was analyzed. The results show that the EKG electrode has excellent corrosion resistance, with its weight loss after electroosmosis, water drainage, and equivalent allowable current being 1.67%, 122%, and ∼2.3 times that of a copper electrode, respectively. Furthermore, it was found that the optimal potential gradient was 1.2 V/cm, and the water drainage cannot be improved by an exceedingly high potential gradient. The current pathway in the test box was in parallel, and the water drainage increased to 410% and the contact resistance decreased by 83% when the number of electrodes was four. These results and novel methodology provide new ideas for EKG electrode design and represent an effective method for saturation line control in gold tailing ponds.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.