Kernel density estimation for undirected dyadic data

IF 9.9 3区 经济学 Q1 ECONOMICS
Bryan S. Graham , Fengshi Niu , James L. Powell
{"title":"Kernel density estimation for undirected dyadic data","authors":"Bryan S. Graham ,&nbsp;Fengshi Niu ,&nbsp;James L. Powell","doi":"10.1016/j.jeconom.2022.06.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables defined for all </span><span><math><mrow><mi>n</mi><mover><mrow><mo>≡</mo></mrow><mrow><mi>d</mi><mi>e</mi><mi>f</mi></mrow></mover><mfenced><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span><span> unordered pairs of agents/nodes in a weighted network of order </span><span><math><mi>N</mi></math></span><span><span><span>). These random variables satisfy a local dependence property: any random variables in the network that share one or two indices may be dependent, while those sharing no indices in common are independent. In this setting, we show that density functions may be estimated by an application of the kernel estimation method of </span>Rosenblatt<span> (1956) and Parzen (1962). We suggest an estimate of their asymptotic variances<span> inspired by a combination of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic” setting and (ii) a </span></span></span>variance estimator<span> for the (estimated) density of a simple network first suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal) distributions of our dyadic density estimates. Specifically, we show that they converge at the same rate as the (unconditional) dyadic sample mean: the square root of the number, </span></span><span><math><mi>N</mi></math></span><span>, of nodes. This differs from the results for nonparametric estimation of densities and regression functions for monadic data, which generally have a slower rate of convergence than their corresponding sample mean.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105336"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407622001610","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables defined for all ndefN2 unordered pairs of agents/nodes in a weighted network of order N). These random variables satisfy a local dependence property: any random variables in the network that share one or two indices may be dependent, while those sharing no indices in common are independent. In this setting, we show that density functions may be estimated by an application of the kernel estimation method of Rosenblatt (1956) and Parzen (1962). We suggest an estimate of their asymptotic variances inspired by a combination of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic” setting and (ii) a variance estimator for the (estimated) density of a simple network first suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal) distributions of our dyadic density estimates. Specifically, we show that they converge at the same rate as the (unconditional) dyadic sample mean: the square root of the number, N, of nodes. This differs from the results for nonparametric estimation of densities and regression functions for monadic data, which generally have a slower rate of convergence than their corresponding sample mean.

无向二元数据的核密度估计
我们研究的是对无向二元随机变量(即为阶数为 N 的加权网络中所有 n≡defN2 无序代理/节点对定义的随机变量)密度函数的非参数估计。这些随机变量满足局部依赖特性:网络中任何共享一个或两个索引的随机变量都可能是依赖的,而那些不共享索引的随机变量则是独立的。在这种情况下,我们可以应用 Rosenblatt(1956 年)和 Parzen(1962 年)的核估计方法来估计密度函数。我们提出了一种对其渐近方差的估计方法,其灵感来自于 (i) Newey(1994 年)在 "一元 "设置中对核估计器进行方差估计的方法和 (ii) Holland 和 Leinhardt(1976 年)首次提出的简单网络(估计)密度的方差估计器。更特别的是我们的二元密度估计的收敛率和渐近(正态)分布。具体来说,我们证明它们的收敛速度与(无条件的)二元样本平均值相同:即节点数 N 的平方根。这不同于对一元数据的密度和回归函数进行非参数估计的结果,后者的收敛速度通常慢于相应的样本平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信