Network and panel quantile effects via distribution regression

IF 9.9 3区 经济学 Q1 ECONOMICS
Victor Chernozhukov , Iván Fernández-Val , Martin Weidner
{"title":"Network and panel quantile effects via distribution regression","authors":"Victor Chernozhukov ,&nbsp;Iván Fernández-Val ,&nbsp;Martin Weidner","doi":"10.1016/j.jeconom.2020.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105009"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407620303390/pdfft?md5=95e8d9cc3d7ec76bead0f99a33c2f2f7&pid=1-s2.0-S0304407620303390-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407620303390","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.

通过分布回归实现网络和面板量化效应
本文提供了一种在非线性网络和面板模型中同时构建量子函数和量子效应置信带的方法,该模型具有未观察到的双向效应、严格的外生协变量和可能的离散结果变量。该方法基于对由固定效应分布回归估计器构建的分布函数的同步置信带的预测。这些固定效应估计器经过去偏处理,以解决附带参数问题。在数据集的两个维度以相同速度增长的渐近序列下,量子函数和效应的置信带在大样本中具有正确的联合覆盖范围。对贸易引力模型的经验应用说明了这些方法对网络数据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信