{"title":"Neutral diversity in experimental metapopulations","authors":"Guilhem Doulcier , Amaury Lambert","doi":"10.1016/j.tpb.2024.02.011","DOIUrl":null,"url":null,"abstract":"<div><p>New automated and high-throughput methods allow the manipulation and selection of numerous bacterial populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-wide extinction and splitting events. We model bacterial growth by a birth–death process and use the theory of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency spectrum for different experimental regimes. We also explore how neutral variation diverges between two recently split populations by establishing a new formula for the expected number of shared and private mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple mutations.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 89-108"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000200/pdfft?md5=f7a882f8520e75e3eb7e0ffeef1dcb3b&pid=1-s2.0-S0040580924000200-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000200","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
New automated and high-throughput methods allow the manipulation and selection of numerous bacterial populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-wide extinction and splitting events. We model bacterial growth by a birth–death process and use the theory of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency spectrum for different experimental regimes. We also explore how neutral variation diverges between two recently split populations by establishing a new formula for the expected number of shared and private mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple mutations.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.