{"title":"Generalizing Parkinson's disease detection using keystroke dynamics: a self-supervised approach.","authors":"Shikha Tripathi, Alejandro Acien, Ashley A Holmes, Teresa Arroyo-Gallego, Luca Giancardo","doi":"10.1093/jamia/ocae050","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson's disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability.</p><p><strong>Materials and methods: </strong>We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets.</p><p><strong>Results: </strong>Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model.</p><p><strong>Discussion: </strong>The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels.</p><p><strong>Conclusion: </strong>This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson's disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability.
Materials and methods: We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets.
Results: Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model.
Discussion: The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels.
Conclusion: This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.