Wound microenvironment-responsive peptide hydrogel with multifunctionalities for accelerating wound healing

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Weimiao Dong, Haihong Yang, Min Liu, Leixia Mei, Jun Han
{"title":"Wound microenvironment-responsive peptide hydrogel with multifunctionalities for accelerating wound healing","authors":"Weimiao Dong,&nbsp;Haihong Yang,&nbsp;Min Liu,&nbsp;Leixia Mei,&nbsp;Jun Han","doi":"10.1002/psc.3595","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&amp;E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3595","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.

Abstract Image

具有多功能性的伤口微环境响应肽水凝胶,可加速伤口愈合。
制造具有止血能力、抗菌活性和伤口愈合潜力的伤口微环境响应肽水凝胶仍是一项挑战。在此,我们通过静电作用诱导多肽(Pep-1)和水溶性新亚甲基蓝(NMB)自组装,构建了一种多功能敷料。透射电子显微镜、圆二色光谱、荧光光谱、Zeta 电位和流变学分析相结合,证明了自组装机制。Pep-1/NMB 水凝胶在伤口酸性环境中也表现出更快的药物释放速度。此外,当 Pep-1/NMB 暴露于 635 纳米激光时,其抗菌率急剧上升至 95.3%,表明抗菌效果显著提高。血液凝固和止血试验结果表明,Pep-1/NMB 能有效提高体外凝血速度,并能有效控制小鼠肝脏出血模型的出血量。同时,溶血和细胞毒性评价表明,水凝胶具有良好的血液相容性和细胞相容性。最后,伤口愈合研究和 H&E 染色结果表明,Pep-1/NMB 水凝胶对细胞迁移和伤口修复有显著影响。研究结果表明,伤口微环境响应型 Pep-1/NMB 水凝胶具有作为高效伤口敷料平台的巨大潜力,可提供快速止血、抗菌和加速伤口愈合的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信