A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-04-15 DOI:10.1089/ars.2023.0288
Eduardo P Melo, Soukaina El-Guendouz, Cátia Correia, Fernando Teodoro, Carlos Lopes, Paulo J Martel
{"title":"A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity.","authors":"Eduardo P Melo, Soukaina El-Guendouz, Cátia Correia, Fernando Teodoro, Carlos Lopes, Paulo J Martel","doi":"10.1089/ars.2023.0288","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, <i>a</i> and <i>a</i>', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. <b><i>Results:</i></b> Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H<sub>2</sub>O<sub>2</sub>-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal <i>a</i> active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal <i>a</i>' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The <i>a</i>' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. <b><i>Innovation and Conclusions:</i></b> The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"181-200"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0288","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.

蛋白二硫异构酶活性的核心是构象依赖性域间氧化还原中继。
目的:蛋白质二硫键异构酶(PDIs)是内质网(ER)中常驻的伴侣蛋白家族。除了保持酶的功能外,一些成员还能催化二硫键的形成和异构化,这是原生折叠和防止错误折叠蛋白质聚集的关键步骤。PDIs 的特征是硫氧还蛋白样结构域的排列,典型的 PDIA1 由四个硫氧还蛋白样结构域组成,形成一个马蹄形,两个活性位点 a 和 a´ 位于其末端。我们的目的是结合ER中蛋白质氧化折叠的全部途径,阐明PDIA1催化循环的重要方面:利用两种荧光氧化还原传感器--roGFP2和HyPer--作为客户底物,我们发现PDIA1的N端活性位点是硫醇的主要氧化剂。从这里,电子可以流向 C 端 a´ 活性位点,PDIA1 的氧化还原依赖性构象灵活性允许形成域间二硫键。然后,a'活性位点作为一个交叉点,将电子重新导向 ER 下游氧化酶或客户蛋白,以还原扰乱的二硫键:PDIA1的两个活性位点作为一个域间氧化还原中继机制协同工作,解释了PDIA1氧化活性形成原生二硫键和PDIA1还原酶活性解决乱码二硫键的原因。这一机制为在 ER 氧化还原失衡的情况下关闭氧化蛋白质折叠提供了新的理论依据。至于它是否适用于细胞中的生理底物,还有待进一步证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信