Alessandro Pistone , Daniele Ludovico , Lorenzo De Mari Casareto Dal Verme , Sergio Leggieri , Carlo Canali , Darwin G. Caldwell
{"title":"Modelling and control of manipulators for inspection and maintenance in challenging environments: A literature review","authors":"Alessandro Pistone , Daniele Ludovico , Lorenzo De Mari Casareto Dal Verme , Sergio Leggieri , Carlo Canali , Darwin G. Caldwell","doi":"10.1016/j.arcontrol.2024.100949","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, the use of robotic systems for inspection and maintenance is gaining importance due to the number of scenarios in which robots can operate. Indeed, robotic systems provide many advantages in harsh and hostile environments, improving workers’ safety and overall efficiency. Given their ability to perform different tasks, robotic manipulators constitute a significant proportion of the possible robotic systems employed in these environments. The category of manipulators is a heterogeneous group that comprises many different types of robots: non-redundant, redundant, and hyper-redundant manipulators, the latter being subdivided into discrete-joint manipulators and continuum manipulators. Among these types of robots, hyper-redundant manipulators play a crucial role in operating in challenging environments due to their ability to perform auxiliary tasks, such as obstacle avoidance and joint limits satisfaction. Furthermore, manipulators can be made of rigid or soft mechanisms and can be mobile, operating in aerial, ground, and underwater environments. The objective of this review article is to provide a reference point for researchers interested in modelling and controlling manipulators for inspection and maintenance in challenging environments.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"57 ","pages":"Article 100949"},"PeriodicalIF":7.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136757882400018X/pdfft?md5=3f1f22153adc5bd441be695f4053d5a4&pid=1-s2.0-S136757882400018X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136757882400018X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the use of robotic systems for inspection and maintenance is gaining importance due to the number of scenarios in which robots can operate. Indeed, robotic systems provide many advantages in harsh and hostile environments, improving workers’ safety and overall efficiency. Given their ability to perform different tasks, robotic manipulators constitute a significant proportion of the possible robotic systems employed in these environments. The category of manipulators is a heterogeneous group that comprises many different types of robots: non-redundant, redundant, and hyper-redundant manipulators, the latter being subdivided into discrete-joint manipulators and continuum manipulators. Among these types of robots, hyper-redundant manipulators play a crucial role in operating in challenging environments due to their ability to perform auxiliary tasks, such as obstacle avoidance and joint limits satisfaction. Furthermore, manipulators can be made of rigid or soft mechanisms and can be mobile, operating in aerial, ground, and underwater environments. The objective of this review article is to provide a reference point for researchers interested in modelling and controlling manipulators for inspection and maintenance in challenging environments.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.