{"title":"Demographic inference for spatially heterogeneous populations using long shared haplotypes","authors":"","doi":"10.1016/j.tpb.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a modified spatial <span><math><mi>Λ</mi></math></span>-Fleming–Viot process to model the ancestry of individuals in a population occupying a continuous spatial habitat divided into two areas by a sharp discontinuity of the dispersal rate and effective population density. We derive an analytical formula for the expected number of shared haplotype segments between two individuals depending on their sampling locations. This formula involves the transition density of a skew diffusion which appears as a scaling limit of the ancestral lineages of individuals in this model. We then show that this formula can be used to infer the dispersal parameters and the effective population density of both regions, using a composite likelihood approach, and we demonstrate the efficiency of this method on a range of simulated data sets.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"159 ","pages":"Pages 108-124"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000285/pdfft?md5=83582755d2ad3c07d32cc176757e368e&pid=1-s2.0-S0040580924000285-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000285","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a modified spatial -Fleming–Viot process to model the ancestry of individuals in a population occupying a continuous spatial habitat divided into two areas by a sharp discontinuity of the dispersal rate and effective population density. We derive an analytical formula for the expected number of shared haplotype segments between two individuals depending on their sampling locations. This formula involves the transition density of a skew diffusion which appears as a scaling limit of the ancestral lineages of individuals in this model. We then show that this formula can be used to infer the dispersal parameters and the effective population density of both regions, using a composite likelihood approach, and we demonstrate the efficiency of this method on a range of simulated data sets.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.