N F Ebaid, K S Abdelkawy, M A Shehata, H F Salem, G Magdy, R R S Hussein, F Elbarbry
{"title":"Effects of pharmacogenetics on pharmacokinetics and toxicity of doxorubicin in Egyptian breast cancer patients.","authors":"N F Ebaid, K S Abdelkawy, M A Shehata, H F Salem, G Magdy, R R S Hussein, F Elbarbry","doi":"10.1080/00498254.2024.2330493","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the impact of single nucleotide polymorphisms in genes (SLC22A16 and CBR1) involved in the pharmacokinetics and toxicity of doxorubicin (DOX) in Egyptian female patients with breast cancer.Patients administered DOX (60 mg/m<sup>2</sup>) for 4 cycles every 3 weeks. The peak DOX plasma concentration was measured using a validated chromatographic method. The genotyping for the selected SNPs, SLC22A16 T > C (rs714368), and CBR1 C > T (rs20572), was performed by RT-PCR. Patients were monitored for hematological and cardiac toxicities.The variant carriers of CBR1 C > T (rs20572) exhibited significantly higher DOX concentration, but no significant association to DOX-induced hematological toxicity. On the other hand, SLC22A16 T > C (rs714368) had no significant influence on DOX plasma concentration, but was significantly correlated with lower risk of neutropenia (OR 0.31, 95% CI 0.12-0.75, <i>p</i> = 0.01) and leukopoenia (OR 0.18, 95% CI 0.07-0.5, <i>p</i> = 0.001). DOX-related cardiotoxicity was correlated with the cumulative dose of DOX (<i>R</i> = 0.238, <i>p</i> = 0.017), but not with any of the two examined SNPs.Genetic polymorphisms in SLC22A16 and CBR1 may explain the inter-individual variations in DOX pharmacokinetics and toxicity. Using pharmacogenetic testing is important to customise drug therapy for cancer patients treated with anthracyclines.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"160-170"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2330493","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of single nucleotide polymorphisms in genes (SLC22A16 and CBR1) involved in the pharmacokinetics and toxicity of doxorubicin (DOX) in Egyptian female patients with breast cancer.Patients administered DOX (60 mg/m2) for 4 cycles every 3 weeks. The peak DOX plasma concentration was measured using a validated chromatographic method. The genotyping for the selected SNPs, SLC22A16 T > C (rs714368), and CBR1 C > T (rs20572), was performed by RT-PCR. Patients were monitored for hematological and cardiac toxicities.The variant carriers of CBR1 C > T (rs20572) exhibited significantly higher DOX concentration, but no significant association to DOX-induced hematological toxicity. On the other hand, SLC22A16 T > C (rs714368) had no significant influence on DOX plasma concentration, but was significantly correlated with lower risk of neutropenia (OR 0.31, 95% CI 0.12-0.75, p = 0.01) and leukopoenia (OR 0.18, 95% CI 0.07-0.5, p = 0.001). DOX-related cardiotoxicity was correlated with the cumulative dose of DOX (R = 0.238, p = 0.017), but not with any of the two examined SNPs.Genetic polymorphisms in SLC22A16 and CBR1 may explain the inter-individual variations in DOX pharmacokinetics and toxicity. Using pharmacogenetic testing is important to customise drug therapy for cancer patients treated with anthracyclines.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology