{"title":"Robust magnetic tweezers for membrane protein folding studies.","authors":"Seoyoon Kim, Duyoung Min","doi":"10.1016/bs.mie.2023.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule magnetic tweezers have recently been adapted for monitoring the interactions between transmembrane helices of membrane proteins within lipid bilayers. In this chapter, we describe the procedures of conducting studies on membrane protein folding using a robust magnetic tweezer method. This tweezer method is capable of observing thousands of (un)folding transitions over extended periods of several to tens of hours. Using this approach, we can dissect the folding pathways of membrane proteins, determine their folding time scales, and map the folding energy landscapes, with a higher statistical reliability. Our robust magnetic tweezers also allow for estimating the folding speed limit of helical membrane proteins, which serves as a link between the kinetics and barrier energies.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"694 ","pages":"285-301"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2023.12.014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Single-molecule magnetic tweezers have recently been adapted for monitoring the interactions between transmembrane helices of membrane proteins within lipid bilayers. In this chapter, we describe the procedures of conducting studies on membrane protein folding using a robust magnetic tweezer method. This tweezer method is capable of observing thousands of (un)folding transitions over extended periods of several to tens of hours. Using this approach, we can dissect the folding pathways of membrane proteins, determine their folding time scales, and map the folding energy landscapes, with a higher statistical reliability. Our robust magnetic tweezers also allow for estimating the folding speed limit of helical membrane proteins, which serves as a link between the kinetics and barrier energies.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.